View source: R/bootstrap-inference.R
| test_f | R Documentation | 
This function conducts a test of overall equality of two nonlinear functions and generates confidence bands for the estimated difference of the nonlinear functions using a bootstrap method.
test_f(
  x,
  y,
  series,
  t,
  name_group_var,
  plsmm_output,
  n_boot = 1000,
  predicted = FALSE,
  show_obs = FALSE,
  verbose = TRUE
)
| x | A matrix of predictors. | 
| y | A continuous vector of response variable. | 
| series | A variable representing different series or groups in the data modeled as a random intercept. | 
| t | A numeric vector indicating the time points. | 
| name_group_var | A character string specifying the name of the grouping variable. | 
| plsmm_output | Output object obtained from the  | 
| n_boot | Numeric specifying the number of bootstrap samples (default is 1000). | 
| predicted | Logical indicating whether to plot predicted values. If  | 
| show_obs | Logical. If  | 
| verbose | Logical indicating whether to display bootstrap progress. Default is  | 
The function generate bootstrap samples and estimate the nonlinear functions for each n_boot sample.
These bootstrap estimates are then used to compute the L2-norm test of equality and the joint confidence bands.
A plot showing the estimated difference and confidence bands of the nonlinear functions.
A list containing:
| overall_test_results | Results from the L2-norm test of equality. | 
| CI_f | Confidence intervals values for the difference of the estimated functions used for plotting. | 
set.seed(123)
data_sim <- simulate_group_inter(
  N = 50, n_mvnorm = 3, grouped = TRUE,
  timepoints = 3:5, nonpara_inter = TRUE,
  sample_from = seq(0, 52, 13), 
  cos = FALSE, A_vec = c(1, 1.5)
)
sim <- data_sim$sim
x <- as.matrix(sim[, -1:-3])
y <- sim$y
series <- sim$series
t <- sim$t
bases <- create_bases(t)
lambda <- 0.0046
gamma <- 0.00000001
plsmm_output <- plsmm_lasso(x, y, series, t,
  name_group_var = "group", bases$bases,
  gamma = gamma, lambda = lambda, timexgroup = TRUE,
  criterion = "BIC"
)
test_f_results <- test_f(x, y, series, t,
 name_group_var = "group", plsmm_output,
 n_boot = 10
)
test_f_results[[1]]
test_f_results[[2]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.