knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
pmcalibration
is focused on the external validation of existing models on new data. Nevertheless, it is possible to use the functions provided to perform internal validation of a model developed on a particular data set. This vignette focuses on internal validation via the calculation of optimism through bootstrap resampling (see References).
First we simulate some data with two 'true' predictors (x1
, x2
) that interact to predict the outcome and we add two 'noise' variables (x3
, x4
) which do not relate to the outcome. The model we consider (m1
) is one with all 4 variables and their two way interactions.[^fn]
[^fn]: Note that this is not supposed to be an example of good model building! See the TRIPOD statement for guidance.
library(pmcalibration) library(data.table) n <- 1000 dat <- sim_dat(n, a1 = -3, a3 = .3) # add some noise variables dat$x3 <- rnorm(n) dat$x4 <- rnorm(n) mean(dat$y) m1 <- glm(y ~ (x1 + x2 + x3 + x4)^2, data = dat, family = binomial(link = "logit")) p1 <- predict(m1, type="response")
We can use pmcalibration
to plot a calibration curve for this model but glms are always perfectly calibrated for the data they were developed in so this is of zero use.
(cc_app <- pmcalibration(y = dat$y, p = p1, smooth = "gam", bs="tp", ci="none")) plot(cc_app)
Internal validation can provide an unbiased assessment of the performance of a model building strategy.
The bootstrap optimism approach to internal validation of some performance metric ($M$) proceeds as follows:
Below is a function to implement this bootstrap optimism for calibration metrics. It requires two other functions be specified. One function that implements the entire model development process and returns the fitted model object. And a second function that takes the fitted model object and produces predicted probabilities for a given data set. The functions below work for our all-two-way-interactions model.
mod <- function(data){ # function that implements the model development procedure glm(y ~ (x1 + x2 + x3 + x4)^2, data = data, family = binomial(link = "logit")) } pred <- function(model, data){ # function to get predictions predict.glm(object = model, newdata = data, type="response") }
This function implements the steps described above and should work for any sensible combination of model_fun
and pred_fun
. It hasn't been widely tested though so should be used with care! y
is the name of the outcome column in data
and B
is the number of bootstrap replicates. This example uses the gam
smooth in pmcalibration
though this could easily be changed.
internal_cal <- function(model_fun, data, pred_fun, y="y", B=100){ # assess apparent performance appmodel <- model_fun(data) p <- pred_fun(appmodel, data) pp <- seq(min(p), max(p), length.out=100) # for plotting apparent <- pmcalibration(y = data[[y]], p = p, smooth = "gam", ci = "none", neval = pp) # one bootstrap resample one_boot <- function(model, data, pred_fun){ d <- data[sample(nrow(data), replace = T), ] #modelcall[["data"]] <- d # bootmodel <- eval(modelcall) # fit model on resampled data bootmodel <- model_fun(d) p_boot <- pred_fun(bootmodel, d) # evaluate on 'training' data (bootstrap resample) p_orig <- pred_fun(bootmodel, data) # evaluate on 'test' (original data) cc_boot <- pmcalibration(y = d[[y]], p = p_boot, smooth = "gam", ci = "none", neval = pp) cc_orig <- pmcalibration(y = data[[y]], p = p_orig, smooth = "gam", ci = "none", neval = pp) # calculate optimism and return metrics_optimism <- cc_boot$metrics - cc_orig$metrics plot_optimism <- cc_boot$plot$p_c_plot - cc_orig$plot$p_c_plot return(list(metrics_optimism, plot_optimism)) } # run B bootstrap replicates (could be sped up via, e.g., pbapply) opt <- lapply(seq(B), function(i){ one_boot(model = model, data = data, pred_fun = pred_fun) }) # calculate average optimism for metrics and plot (to make bias corrected curve) metrics_opt <- rbindlist(lapply(opt, function(x) data.frame(t(x[[1]])))) metrics_opt <- apply(metrics_opt, 2, mean) plot_opt <- rbindlist(lapply(opt, function(x) data.frame(t(x[[2]])))) plot_opt <- apply(plot_opt, 2, mean) # return out <- list( metrics = data.frame(apparent = apparent$metrics, optimism = metrics_opt, bias_corrected = apparent$metrics - metrics_opt ), plot = data.frame(p = pp, apparent = apparent$plot$p_c_plot, optimism = plot_opt, bias_corrected = apparent$plot$p_c_plot - plot_opt ) ) return(out) }
The code below runs internal validation on calibration metrics for the two way interaction model.
iv <- internal_cal(model_fun = mod, data = dat, pred_fun = pred) iv$metrics plot(iv$plot$p, iv$plot$apparent, type="l", xlim=c(0,1), ylim=c(0,1), xlab="Predicted", ylab="Observed") lines(iv$plot$p, iv$plot$bias_corrected, lty=2) legend("topleft", lty=c(1,2), legend = c("Apparent", "Bias Corrected"))
Suppose we consider another model building strategy in which we use backwards stepwise selection of variables via AIC. This can be assessed by simply changing the model_fun
argument (the pred_fun
works with the returned object so doesn't need to be changed).
mod2 <- function(data){ # function that implements the model development procedure m <- glm(y ~ (x1 + x2 + x3 + x4)^2, data = data, family = binomial(link = "logit")) step(m, direction = "backward", trace = 0) } iv2 <- internal_cal(model_fun = mod2, data = dat, pred_fun = pred) iv2$metrics plot(iv2$plot$p, iv2$plot$apparent, type="l", xlim=c(0,1), ylim=c(0,1), xlab="Predicted", ylab="Observed") lines(iv2$plot$p, iv2$plot$bias_corrected, lty=2) legend("topleft", lty=c(1,2), legend = c("Apparent", "Bias Corrected"))
Steyerberg, E. W., Bleeker, S. E., Moll, H. A., Grobbee, D. E., & Moons, K. G. (2003). Internal and external validation of predictive models: a simulation study of bias and precision in small samples. Journal of clinical epidemiology, 56(5), 441-447. https://doi.org/10.1016/s0895-4356(03)00047-7
Harrell Jr, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in medicine, 15(4), 361-387.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.