View source: R/pmpp_aux_funcs.R
Produce posterior means of lambda's for the parametric GMM implementation given autoregressive coefficient (rho)
1 2 3 | GMM_parametric(rho, alpha = 0, optim_method, init, n_lambda, n_alpha,
X_mat, Y_mat, Z_mat, W, T, N, aux_Y0, common_par_method, X_star, Y_star,
Z_star)
|
rho |
lagged dependent variable coefficients |
alpha |
external variables coefficients |
optim_method |
optimization method |
init |
initial values for the optimization routine |
n_lambda |
number of columns in W; currently always set to 1 |
n_alpha |
number of external variables |
X_mat |
lagged dependent variable matrix |
Y_mat |
dependent variable matrix |
Z_mat |
external variable matrix |
W |
cross-sectionally invariant variables - not used now |
T |
time dimension of the data |
N |
cross-sectional dimension of the data |
aux_Y0 |
auxiliary matrix with initial observations of the dependent variable |
common_par_method |
method for estimating common parameters |
X_star |
auxiliary matrix for OFD transformation |
Y_star |
auxiliary matrix for OFD transformation |
Z_star |
auxiliary matrix for OFD transformation |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.