Compute the marginal MLE of phi

Share:

Description

Compute the marginal MLE of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets.

Usage

1
2
approxMargMLE(data, N1, N2, N01, N02, l = 0, u = 1000, out = c("par",
  "all"), tol = 1e-10)

Arguments

data

the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)

N1

the opportunity size of group 1 for the fallible data

N2

the opportunity size of group 2 for the fallible data

N01

the opportunity size of group 1 for the infallible data

N02

the opportunity size of group 2 for the infallible data

l

the lower end of the range of possible phi's (for optim)

u

the upper end of the range of possible phi's (for optim)

out

"par" or "all" (for the output of optim)

tol

tolerance parameter for the rmle EM algorithm

Value

a named vector containing the marginal mle of phi

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
## Not run: 

# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)

fullMLE(data, N1, N2, N01, N02)
margMLE(data, N1, N2, N01, N02)
approxMargMLE(data, N1, N2, N01, N02)



# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38;  m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <-  9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)

fullMLE(data, N1, N2, N01, N02)
# margMLE(data, N1, N2, N01, N02) # ~1 min
approxMargMLE(data, N1, N2, N01, N02)




## End(Not run)