| dpoistweedie | R Documentation | 
  Let X be a non-negative random variable following \mathcal{T}_{P}(\theta , \lambda). If a discrete random
variable Y is such that the conditional distribution of Y given X is Poisson with mean
X, then the EDM generated by the distribution of Y is of the Poisson-Tweedie class. For p>=1 individual probabilities of Y\sim\mathcal{P\mathcal{T}_{P}(\theta ,\lambda )} when Y follows a Poisson-Tweedie Distributions are: 
 Pr(Y=y)=\int_{0}^{\infty}\frac{e^{-x}x^{y}}{y!}\mathcal{T}_{P}(\theta , \lambda)d(x), y=0,1, 
.
For p = 1, it is a Neyman type A distribution; for 1<p<2 , then Poisson-compound Poisson  distribution is obtained; 
for p = 2,the Poisson-Tweedie model PT_{2}\left(\mu,\lambda\right)  correspond  to the negative binomiale law BN\left(
 \lambda,\frac{1}{1+\mu}\right); and, for p = 3, it is the Sichel or Poisson-inverse
Gaussian distribution (e.g. Willmot, 1987). Also, when p\longrightarrow\infty,
\lambda=\frac{\mu\times\left(  1-\theta_{0}\right)  }{1+\mu}  and the
\lambda=\mu\simeq-\theta_{0} , the Poisson-Tweedie model
PT_{p}\left(  \mu,\lambda\right) correspond  to the poisson law
 P_{y}\left(  \lambda^{2}\right). 
dpoistweedie(y, p, mu, lambda, theta0, log)
       densitept1(p, n, mu, lambda, theta0)
       densitept2(p, n, mu, lambda, theta0)
       dpt1(p, n, mu, lambda, theta0)
       dpt1Log(p, n, mu, lambda, theta0)
       dpt2(p, n, mu, lambda, theta0)
       dpt2Log(p, n, mu, lambda, theta0)
       dptp(p, n, mu, lambda, theta0)
       dptpLog(p, n, mu, lambda, theta0)
       gam1.1(y, lambda)
       gam1.2(y, lambda)
       imfx0(x0,p,mu,theta0)
       moyennePT(p,omega,theta0)
       omega(p,mu,theta0)
       testOmegaPT(p,n)
y | 
 vector of (non-negative integer) quantiles   | 
p | 
 is a real index related to a precise model   | 
n | 
 non-negative integer (length of y)  | 
x0 | 
 is a real index  | 
mu | 
 the mean  | 
omega | 
 is a real index.  | 
lambda | 
 the dispersion parameter   | 
theta0 | 
 the canonical parameter   | 
log | 
 logical; if TRUE, probabilities y are given as log(y).  | 
The Poisson-Tweedie distributions arethe EDMs with a variance of the form 
V_{p}^{\mathcal{PT}}\left(  \mu\right)  =\mu+\mu^{p}\exp\left\{  \left(2-p\right)  \Phi_{p}\left(  \mu\right)  \right\}  ,\mu>0, 
where \Phi_{p}\left(  \mu\right)  a generally implicit, denotes the inverse of the increansing function 
\omega\longrightarrow\frac{d\left\{  \ln IE\left(  e^{wy}\right)  \right\}}{dw}. omega(p,mu,theta0) is a function whose permit to determine the value of w.  
density (dpoistweedie),for the given Poisson-Tweedie distribution with parameters 
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
Dunn, Peter K and Smyth, Gordon K (To appear). Series evaluation of Tweedie exponential dispersion model densities Statistics and Computing.
Dunn, Peter K and Smyth, Gordon K (2001). Tweedie family densities: methods of evaluation. Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark, 2–6 July
Hougaard, P., Lee, M-L.T. and Whitmore, G.A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics 53, 1225–1238
Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society, B, 49, 127–162.
Kokonendji, C.C., Demeetrio, C.G.B. and Dossou-Gbete, S. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demetrio classes. SORT: Statistics and Operations Research Transactions 28 (2), 201–214.
ppoistweedie
   
## dpoistweedie(y, power, mu,lambda,theta0,log = FALSE)
## Plot dpois() and dpoistweedie() with  log=FALSE
layout(matrix(1 :1, 1, 1))
layout.show(2) 
power <- exp(10) 
mu <-10
lambda <- 10
theta0<--10
lambda1<-100
y <- 0:200
## plot  dpoistweedie function with log = FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log = FALSE)
d2<-dpois(y,lambda1,log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y 
   avec  y=0:200,  power=exp(30),mu=10, lambda=10,
   theta0=-10,  lambda1=100", ylab="densite P(100)",
   main = "dpoistweedie(*,col='blue' log=FALSE)
   et dpois(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
sum(abs(erreure))
## Plot dnbinom() and dpoistweedie()
layout(matrix(1 :1, 1, 1))
layout.show(2) 
power<-2 
mu<-10
lambda <- 1
theta0<-0
prob<-1-(mu/(1+mu))
y <- seq(0,50, by =3)
## plot a dpoistweedie function with log=FALSE
d1<-dpoistweedie(y,power,mu,lambda,theta0,log=FALSE)
d2<-dnbinom(y,lambda,prob, log=FALSE)
erreure<-d1-d2
plot (y,d1,col='blue', type='h',xlab="y 
   avec  y=seq(0,50,by=3),  power=2,mu=10, 
   lambda=1, thetao=0", ylab="densite NB(1,1/11)"
   ,main = "dnpoistweedie(*,col='blue' log=FALSE)
   et dnbinom(*,col='red' log=FALSE)")
lines(y,d2,type ="p",col='red',lwd=2)
abs(erreure)
 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.