Description Usage Arguments Value Examples
Logistic regression model statistics
1 | logregR2(model, digits = 3)
|
model |
An estimated logistic regression model |
digits |
Number of digits to be displayed after decimal points |
Returns list of statistics about model (a "LogRegR2" class object)
1 2 3 4 5 6 7 8 | library(poliscidata)
obama_state_model <- glm(obama_win12 ~ secularism + gunlaw_rank, data=states, family=binomial)
summary(obama_state_model)
logregR2(obama_state_model)
obama_vote_model <- svyglm(obama_vote ~ ft_dem, design=nesD, family="quasibinomial")
summary(obama_vote_model)
logregR2(obama_vote_model)
|
Call:
glm(formula = obama_win12 ~ secularism + gunlaw_rank, family = binomial,
data = states)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.50562 -0.20026 0.03132 0.21780 2.42177
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.21467 1.80898 0.671 0.50192
secularism 0.04126 0.01513 2.728 0.00638 **
gunlaw_rank -0.20996 0.06853 -3.064 0.00219 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 69.235 on 49 degrees of freedom
Residual deviance: 20.210 on 47 degrees of freedom
AIC: 26.21
Number of Fisher Scoring iterations: 7
Chi2 49.024
Df 2
Sig. <.001
Cox and Snell Index 0.625
Nagelkerke Index 0.834
McFadden's R2 0.708
Call:
svyglm(formula = ...)
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.665066 0.290913 -16.04 <2e-16 ***
ft_dem 0.093648 0.005256 17.82 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.553351)
Number of Fisher Scoring iterations: 6
Chi2 2698.382
Df 1
Sig. <.001
Cox and Snell Index 0.476
Nagelkerke Index 0.645
McFadden's R2 0.483
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.