Nothing
poso_simu_pop()
in v1.2.5 introduced several issues and have been revertedposo_replace_et()
enables updating a model with events from a new rxode2 event table, while accounting for and interpolating any covariates or inter-occasion variabilityposo_time_cmin()
, poso_dose_conc()
, poso_dose_auc()
and poso_inter_cmin()
.poso_simu_pop()
provides an rxode2 model using the simulated ETA and the input dataset,
with interpolation of covariates, to make plotting easiervignette("route_of_administration")
shows how to select a route of administration for optimal dosingvignette("population_models")
describes the structure of prior population models written as model functions which can be parsed by rxode2
and used by posologyr
vignette("posologyr_user_defined_models")
is renamed vignette("classic_posologyr_models")
rxode2
model functionsposo_estim_map()
, poso_estim_sir()
and poso_simu_pop()
failed for models featuring a single parameter with IIV.poso_*
functions. Once the model has been parsed by rxode2()
with this package the model$posologyr
gives the list needed for poso_*
functionsposo_dose_conc()
, poso_dose_auc()
and poso_inter_cmin()
where the returned estimate of the target value to be optimized against was always equal to zero.poso_time_cmin()
, poso_dose_conc()
, and poso_dose_auc()
now explicitly states the consequences of setting tdm
to TRUE
: which parameters are required, which parameters are ignored, and which parameters behave differently.poso_time_cmin()
, poso_dose_conc()
, and poso_dose_auc()
now return a warning if any of the input parameters are ignored.poso_dose_auc()
posologyr()
(as requested by CRAN)parent.frame()
(as requested by CRAN)poso_estim_map()
, poso_estim_sir()
and poso_estim_mcmc()
can now estimate individual PK profiles for multiple endpoints models (eg. PK-PD, parent-metabolite, blood-CSF...), using a different residual error model for each endpoint.poso_time_cmin()
, poso_dose_conc()
, poso_dose_auc()
and poso_inter_cmin()
now allow you to select the end point of interest for which you want to optimize, provided it is defined in the model.vignette("a_priori_dosing")
illustrates a priori dose selectionvignette("a_posteriori_dosing")
illustrates a posteriori dose selection, using TDM datavignette("auc_based_dosing")
shows how to select an optimal dose for a given target AUC using data from TDMvignette("multiple_endpoints")
introduces the new multiple endpoints featureposo_time_cmin()
can now estimate time needed to reach a selected trough
concentration (Cmin) using the data from TDM directlyposo_dose_conc()
can now estimate an optimal dose to reach a target
concentration following the events from TDMposo_dose_auc()
can now estimate an optimal dose to reach a target auc
following the events from TDMposologyr()
is now an internal function, all exported functions take
patient data and a prior model as input parametersposo_estim_map()
provides an rxode2 model using MAP-EBE and the input dataset,
with interpolation of covariates, to make plotting easierposologyr()
functionposo_time_cmin()
, poso_dose_auc()
, poso_dose_conc()
, and
poso_inter_cmin()
no longer fail for models with IOVposo_estim_sir()
estimates the posterior distribution of individual
parameters by Sequential Importance Resampling (SIR). It is roughly 25 times
faster than poso_estim_mcmc()
for 1000 samples.poso_estim_map()
allows the estimation of the individual parameters by
adaptive MAP forecasting (cf. doi: 10.1007/s11095-020-02908-7) with
adapt=TRUE
.poso_simu_pop()
, poso_estim_map()
, and poso_estim_sir()
now support
models with both inter-individual (IIV) and inter-occasion variability (IOV).MASS:mvrnorm
is replaced by mvtnorm::rmvnorm
for multivariate normal
distributions.poso_estim_map()
now uses method="L-BFGS-B" in optim for better convergence
of the algorithm.poso_inter_cmin()
now uses method="L-BFGS-B" in optim for better convergence
of the algorithm.poso_dose_conc()
is the new name of poso_dose_ctime()
.poso_time_cmin()
, poso_dose_auc()
,
poso_dose_conc()
, and poso_inter_cmin()
now work with prior and posterior
distributions of ETA, and not only with point estimates (such as the MAP).nocb
parameter is added to posologyr()
. The interpolation method for
time-varying covariates can be either last observation carried forward (locf,
the RxODE default), or next observation carried backward (nocb, the NONMEM
default).vignette("uncertainty_estimates")
is removed.poso_time_cmin()
, poso_dose_ctime()
, and poso_dose_auc()
now work for
multiple dose regimen.poso_inter_cmin()
allows the optimization of the inter-dose interval for
multiple dose regimen.vignette("case_study_vancomycin")
illustrates AUC-based optimal dosing,
multiple dose regimen, and continuous intravenous infusion.First public release.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.