Nothing
get_best_learner
print information when verbose > 0 [plain]Code
get_best_learner(resamples = cv_folds, learners = learners, preproc = list(mod = y ~
x1), verbose = 2)
Message
i Fitting learners
* mod_mars
* mod_lm
i No tuning parameters. `fit_resamples()` will be attempted
i 1 of 2 resampling: mod_mars
v 1 of 2 resampling: mod_mars ()
i No tuning parameters. `fit_resamples()` will be attempted
i 2 of 2 resampling: mod_lm
v 2 of 2 resampling: mod_lm ()
i Model with lowest RMSE: mod_lm
Output
== Workflow ====================================================================
Preprocessor: Formula
Model: linear_reg()
-- Preprocessor ----------------------------------------------------------------
y ~ x1
-- Model -----------------------------------------------------------------------
Linear Regression Model Specification (regression)
Computational engine: lm
get_best_learner
print information when verbose > 0 [ansi]Code
get_best_learner(resamples = cv_folds, learners = learners, preproc = list(mod = y ~
x1), verbose = 2)
Message
[36mi[39m Fitting learners
* mod_mars
* mod_lm
[34mi[39m [30mNo tuning parameters. `fit_resamples()` will be attempted[39m
[34mi[39m [30m1 of 2 resampling: mod_mars[39m
[32mv[39m [30m1 of 2 resampling: mod_mars[39m[30m ()[39m
[34mi[39m [30mNo tuning parameters. `fit_resamples()` will be attempted[39m
[34mi[39m [30m2 of 2 resampling: mod_lm[39m
[32mv[39m [30m2 of 2 resampling: mod_lm[39m[30m ()[39m
[36mi[39m Model with lowest RMSE: mod_lm
Output
== Workflow ====================================================================
[3mPreprocessor:[23m Formula
[3mModel:[23m linear_reg()
-- Preprocessor ----------------------------------------------------------------
y ~ x1
-- Model -----------------------------------------------------------------------
Linear Regression Model Specification (regression)
Computational engine: lm
get_best_learner
print information when verbose > 0 [unicode]Code
get_best_learner(resamples = cv_folds, learners = learners, preproc = list(mod = y ~
x1), verbose = 2)
Message
ℹ Fitting learners
• mod_mars
• mod_lm
i No tuning parameters. `fit_resamples()` will be attempted
i 1 of 2 resampling: mod_mars
✔ 1 of 2 resampling: mod_mars ()
i No tuning parameters. `fit_resamples()` will be attempted
i 2 of 2 resampling: mod_lm
✔ 2 of 2 resampling: mod_lm ()
ℹ Model with lowest RMSE: mod_lm
Output
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Formula
Model: linear_reg()
── Preprocessor ────────────────────────────────────────────────────────────────
y ~ x1
── Model ───────────────────────────────────────────────────────────────────────
Linear Regression Model Specification (regression)
Computational engine: lm
get_best_learner
print information when verbose > 0 [fancy]Code
get_best_learner(resamples = cv_folds, learners = learners, preproc = list(mod = y ~
x1), verbose = 2)
Message
[36mℹ[39m Fitting learners
• mod_mars
• mod_lm
[34mi[39m [30mNo tuning parameters. `fit_resamples()` will be attempted[39m
[34mi[39m [30m1 of 2 resampling: mod_mars[39m
[32m✔[39m [30m1 of 2 resampling: mod_mars[39m[30m ()[39m
[34mi[39m [30mNo tuning parameters. `fit_resamples()` will be attempted[39m
[34mi[39m [30m2 of 2 resampling: mod_lm[39m
[32m✔[39m [30m2 of 2 resampling: mod_lm[39m[30m ()[39m
[36mℹ[39m Model with lowest RMSE: mod_lm
Output
══ Workflow ════════════════════════════════════════════════════════════════════
[3mPreprocessor:[23m Formula
[3mModel:[23m linear_reg()
── Preprocessor ────────────────────────────────────────────────────────────────
y ~ x1
── Model ───────────────────────────────────────────────────────────────────────
Linear Regression Model Specification (regression)
Computational engine: lm
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.