Nothing
rctglm_with_prognosticscore
returns object of correct classCode
prog(ate)
Output
$formula
Y ~ .
$model_fit
== Workflow [trained] ==========================================================
Preprocessor: Formula
Model: mars()
-- Preprocessor ----------------------------------------------------------------
Y ~ .
-- Model -----------------------------------------------------------------------
Selected 3 of 12 terms, and 1 of 1 predictors
Termination condition: Reached nk 21
Importance: W1
Number of terms at each degree of interaction: 1 2 (additive model)
GCV 1.073623 RSS 94.86537 GRSq 0.2633666 RSq 0.3358951
$learners
$learners$mars
$learners$mars$model
MARS Model Specification (regression)
Main Arguments:
prod_degree = 3
Computational engine: earth
$learners$lm
$learners$lm$model
Linear Regression Model Specification (regression)
Computational engine: lm
$cv_folds
[1] 5
$data
Y W1
1 0.49320997 1.65922417
2 2.81020807 1.74830165
3 3.30361633 -0.85544186
4 4.51327610 1.32179050
5 0.42877160 0.56698208
6 -0.03639125 0.07638380
7 1.51111188 0.94635326
8 1.43696662 -1.46133361
9 1.23551013 0.62796916
10 1.91160592 0.82025914
11 0.05112161 -0.16903290
12 4.18967942 0.87644901
13 2.58668340 1.73868899
14 2.16020293 -0.97828470
15 1.72100587 -0.15082871
16 2.51063027 1.76005809
17 2.28098564 1.91290571
18 3.97554243 -1.53005055
19 0.93273734 -0.10001167
20 0.07489067 0.24133098
21 2.88412710 1.61612555
22 2.13666420 -1.44515933
23 1.86853076 1.95556692
24 1.39705230 1.78667293
25 2.92095378 -1.67024977
26 0.91120655 0.05684714
27 2.15347219 -0.43918613
28 2.26359498 1.62295252
29 0.65729804 -0.21212149
30 3.71183000 1.34401704
31 1.94869317 0.95038247
32 3.36867159 1.24422057
33 0.44757758 -0.44756687
34 1.54606758 0.74067892
35 2.10428277 -1.98420664
36 2.06635049 1.33166432
37 3.73037613 -1.97066341
38 2.35798878 -1.16936411
39 2.74190715 1.62640563
40 0.70617662 0.44711457
41 0.96579612 -0.48176304
42 2.37921399 -0.25691366
43 3.70028037 -1.85027587
44 3.67112178 1.89415966
45 0.02378805 -0.27299500
46 4.49973442 1.83030639
47 3.51657950 1.55101962
48 1.76995390 0.55991508
49 3.13069656 1.88386644
50 0.71509305 0.47535283
51 0.83095573 -0.66629115
52 1.91204478 -0.61300701
53 0.39399106 -0.40605835
54 2.55219844 1.13877110
55 3.74197019 -1.84425404
56 1.22441298 0.99518154
57 1.23829405 0.70910732
58 2.49773536 -1.31494268
59 1.20743579 -0.95564814
60 0.70314575 0.05765174
61 2.84186590 0.70242910
62 3.37314044 1.93126879
63 2.67606665 1.03817707
64 -0.45731133 0.26595370
65 2.42386029 1.39875887
66 3.48447125 -1.24210426
67 3.00190494 -0.91485354
68 2.25947467 1.31263394
69 -0.65269512 0.77281928
70 2.35291536 -1.03782104
71 3.02439222 -1.82804482
72 2.53261346 -1.43808362
73 2.51687062 -1.13445834
74 1.55503414 -0.08240574
75 2.00706408 -1.21035863
76 3.46362014 0.87742335
77 2.85334522 -1.96846105
78 0.47388675 -0.49804014
79 2.46797386 0.05763083
80 3.57229962 -1.99371778
81 2.30504949 0.32641601
82 0.80674585 -1.36837917
83 1.23240656 -0.56388678
84 2.46071835 0.58252751
85 2.38276664 1.10329345
86 1.72578145 0.25458737
87 4.77191239 -1.06518641
88 1.67802116 -1.64007793
89 0.38115855 -1.65755174
90 2.32768255 -0.77912652
91 1.24353650 0.66970606
92 2.81058307 -1.99904441
93 1.56622386 -1.16572017
94 4.69257480 1.73213651
95 2.36328786 1.70257899
96 1.73078868 0.93637720
97 1.76252506 -0.66771207
98 1.95288869 0.06025332
99 2.33964920 0.97589859
100 0.06257362 0.47663696
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.