Nothing
rctglm_with_prognosticscore
snapshot testsCode
ate <- withr::with_seed(42, {
rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat, family = gaussian(),
estimand_fun = "ate", data_hist = dat_notreat, learners = learners,
cv_variance = TRUE, verbose = 2)
})
Message
-- Fitting prognostic model --
i Created formula for fitting prognostic model as: Y ~ .
i Fitting learners
* mod_mars
* mod_lm
i No tuning parameters. `fit_resamples()` will be attempted
i 1 of 2 resampling: mod_mars
v 1 of 2 resampling: mod_mars ()
i No tuning parameters. `fit_resamples()` will be attempted
i 2 of 2 resampling: mod_lm
v 2 of 2 resampling: mod_lm ()
i Model with lowest RMSE: mod_mars
i Investigate trained learners and fitted model in `prognostic_info` list element
-- Symbolic differentiation of estimand function --
i Symbolically deriving partial derivative of the function 'psi1 - psi0' with respect to 'psi0' as: '-1'.
* Alternatively, specify the derivative through the argument
`estimand_fun_deriv0`
i Symbolically deriving partial derivative of the function 'psi1 - psi0' with respect to 'psi1' as: '1'.
* Alternatively, specify the derivative through the argument
`estimand_fun_deriv1`
Code
ate_wo_cvvariance <- withr::with_seed(42, {
rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat, family = gaussian(),
estimand_fun = "ate", data_hist = dat_notreat, learners = learners,
cv_variance = FALSE, verbose = 0)
})
Code
rr_pois_wo_cvvariance
Output
Object of class rctglm_prog
Call: rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat_pois, family = poisson(),
estimand_fun = "rate_ratio", cv_variance = FALSE, data_hist = dat_notreat_pois,
learners = learners, verbose = 0)
Counterfactual control mean (psi_0=E[Y|X, A=0]) estimate: 7.981
Counterfactual control mean (psi_1=E[Y|X, A=1]) estimate: 58.48
Estimand function r: psi1/psi0
Estimand (r(psi_1, psi_0)) estimate (SE): 7.327 (0.518)
Code
rr_pois_with_cvvariance
Output
Object of class rctglm_prog
Call: rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat_pois, family = poisson(),
estimand_fun = "rate_ratio", cv_variance = TRUE, data_hist = dat_notreat_pois,
learners = learners, verbose = 0)
Counterfactual control mean (psi_0=E[Y|X, A=0]) estimate: 7.981
Counterfactual control mean (psi_1=E[Y|X, A=1]) estimate: 58.48
Estimand function r: psi1/psi0
Estimand (r(psi_1, psi_0)) estimate (SE): 7.327 (0.5271)
Code
rr_nb_wo_cvvariance
Output
Object of class rctglm_prog
Call: rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat_pois, family = MASS::negative.binomial(2),
estimand_fun = "rate_ratio", cv_variance = FALSE, data_hist = dat_notreat_pois,
learners = learners, verbose = 0)
Counterfactual control mean (psi_0=E[Y|X, A=0]) estimate: 8.067
Counterfactual control mean (psi_1=E[Y|X, A=1]) estimate: 57.7
Estimand function r: psi1/psi0
Estimand (r(psi_1, psi_0)) estimate (SE): 7.153 (0.5005)
Code
rr_nb_with_cvvariance
Output
Object of class rctglm_prog
Call: rctglm_with_prognosticscore(formula = Y ~ ., exposure_indicator = A,
exposure_prob = exposure_prob, data = dat_treat_pois, family = MASS::negative.binomial(2),
estimand_fun = "rate_ratio", cv_variance = TRUE, data_hist = dat_notreat_pois,
learners = learners, verbose = 0)
Counterfactual control mean (psi_0=E[Y|X, A=0]) estimate: 8.067
Counterfactual control mean (psi_1=E[Y|X, A=1]) estimate: 57.7
Estimand function r: psi1/psi0
Estimand (r(psi_1, psi_0)) estimate (SE): 7.153 (0.5114)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.