knitr::opts_chunk$set( message = FALSE, warning = FALSE, collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 9 )
The Stewart model is a spatial interaction modeling approach which aims to compute indicators based on stock values weighted by distance. These indicators have two main interests:
This functional semantic simplification may help to show a smoothed context-aware picture of the localized socio-economic activities.
In this vignette, we show a use case of these potentials on the regional GDP per capita in Italy with three maps:
library(eurostat) library(giscoR) library(potential) library(mapsf) library(sf) # Data download from Eurostat gdp_raw <- get_eurostat('nama_10r_3gdp') pop_raw <- get_eurostat('nama_10r_3popgdp') # Selection of the relevant rows and columns pop <- pop_raw[nchar(pop_raw$geo)==5 & pop_raw$time == "2018-01-01", ] names(pop)[4] <- "pop" pop$pop <- pop$pop * 1000 gdp <- gdp_raw[nchar(gdp_raw$geo)==5 & gdp_raw$time == "2018-01-01" & gdp_raw$unit == "MIO_EUR", ] names(gdp)[4] <- "gdp" gdp$gdp <- gdp$gdp * 1000000 # Base maps download from GISCO countries <- gisco_get_countries() nuts_raw <- gisco_nuts nuts <- nuts_raw[nuts_raw$LEVL_CODE == 3 & nuts_raw$CNTR_CODE == "IT", ] nuts <- st_transform(nuts, 3035) countries <- st_transform(countries, 3035) # Join between base map and dataset nuts <- merge(nuts, pop[,c("geo", "pop")], by.x = "NUTS_ID", by.y = "geo", all.x = T) nuts <- merge(nuts, gdp[,c("geo", "gdp")], by.x = "NUTS_ID", by.y = "geo", all.x = T)
# Compute the GDP per capita nuts$gdp_hab <- nuts$gdp / nuts$pop # Set Breaks bv <- quantile(nuts$gdp_hab, seq(from = 0, to = 1, length.out = 9), na.rm = T) # Set a color palette pal <- mf_get_pal(n = 9, palette = "Burg", rev = TRUE) # Set the credit text cred <- paste0("© EuroGeographics for the administrative boundaries\n", "© Eurostat, 2021 (nama_10r_3gdp and nama_10r_3popgdp tables)\n", "T. Giraud, 2022") # Draw the basemap mf_theme(bg = "#cdd2d4", mar = c(0,0,1.2,0), tab = FALSE) mf_init(nuts) mf_map(countries, col = "#f5f5f3ff", border = "#a9b3b4ff", add = TRUE) # Map the regional GDP per capita mf_map(x = nuts, var = "gdp_hab", type = "choro", leg_pos = "topright", breaks = bv, pal = pal, border = NA, leg_frame = TRUE, leg_title = "GDP per Capita\n(in euros, 2018)", leg_val_rnd = -2, col_na = "grey60", add = TRUE) mf_map(countries[countries$ISO3_CODE == "ITA", ], col = NA, border = "#a9b3b4ff", add = TRUE) # Set a layout mf_arrow("topleft") mf_title(txt = "GDP per Capita Inequalities in Italy") mf_scale(100) mf_credits(txt = cred, bg = "#ffffff80")
We compute the potentials of GDP for each spatial unit. The computed value takes into account the spatial distribution of the stock variable and return a sum weighted by distance, according a specific spatial interaction and fully customizable function.
# Create a distance matrix between units nuts_pt <- nuts st_geometry(nuts_pt) <- st_centroid(st_geometry(nuts_pt)) d <- create_matrix(nuts_pt, nuts_pt) # Compute the potentials of population and GDP per units # function = exponential, beta = 2, span = 100 km pot <- potential(x = nuts_pt, y = nuts_pt, d = d, var = c("pop", "gdp"), fun = "e", beta = 2, span = 100000) # Compute the potential GDP per capita nuts$gdp_hab_pot <- pot[, 2] / pot[, 1] # Exclude regions with No Data nuts$gdp_hab_pot[is.na(nuts$gdp_hab)] <- NA # Set breaks bv2 <- c(min(nuts$gdp_hab_pot, na.rm = TRUE), bv[2:8], max(nuts$gdp_hab_pot, na.rm = TRUE)) # Draw the basemap mf_init(nuts) mf_map(countries, col = "#f5f5f3ff", border = "#a9b3b4ff", add = TRUE) # Map the regional GDP per capita mf_map(x = nuts, var = "gdp_hab_pot", type = "choro", leg_pos = "topright", breaks = bv2, pal = pal, border = NA, leg_title = "Potential\nGDP per Capita\n(in euros, 2018)", leg_frame = TRUE, leg_val_rnd = -2, col_na = "grey60", add = TRUE) mf_map(countries[countries$ISO3_CODE == "ITA", ], col = NA, border = "#a9b3b4ff", add = TRUE) # Set a layout mf_arrow("topleft") mf_title(txt = "GDP per Capita Inequalities in Italy") mf_scale(100) mf_credits(txt = cred, bg = "#ffffff80") # Set a text to explicit the function parameters text(x = 4873429, y = 2258495, xpd = TRUE, labels = paste0("Distance function:\n", "- type = exponential\n", "- beta = 2\n", "- span = 100 km"), cex = 0.8, adj = 0, font = 3)
This map gives a smoothed picture of the spatial patterns of GDP per capita in Italy while keeping the original spatial units as interpretive framework. Hence, the map reader can still rely on a known territorial division to develop its analyses.
In this case, the potential GDP per capita is computed on a regular grid.
# Compute the potentials of population on a regular grid (10km resolution) g <- create_grid(x = nuts, res = 10000) d <- create_matrix(nuts_pt, g) # function = exponential, beta = 2, span = 75 km pot2 <- potential(x = nuts_pt, y = g, d = d, var = c("pop", "gdp"), fun = "e", beta = 2, span = 100000) # Create the ratio variable g$gdp_hab_pot <- pot2[, 2] / pot2[, 1] # Create an isopleth layer equipot <- equipotential(x = g, var = "gdp_hab_pot", breaks = bv, mask = nuts[!is.na(nuts$gdp_hab),]) # Get breaks values bv3 <- c(equipot$min, max(equipot$max)) # Draw the basemap mf_init(nuts) mf_map(countries, col = "#f5f5f3ff", border = "#a9b3b4ff", add = TRUE) # Map the regional GDP per capita mf_map(x = equipot, var = "min", type = "choro", leg_pos = "topright", breaks = bv, pal = pal, border = NA, leg_title = "Potential\nGDP per Capita\n(in euros, 2018)", leg_frame = TRUE, leg_val_rnd = -2, add = TRUE) mf_map(countries[countries$ISO3_CODE == "ITA", ], col = NA, border = "#a9b3b4ff", add = TRUE) # Set a layout mf_arrow("topleft") mf_title(txt = "GDP per Capita Inequalities in Italy") mf_scale(100) mf_credits(txt = cred, bg = "#ffffff80") # Set a text to explicit the function parameters text(x = 4873429, y = 2308495, xpd = TRUE, labels = paste0("Distance function:\n", "- type = exponential\n", "- beta = 2\n", "- span = 100 km"), cex = 0.8, adj = 0, font = 3)
Unlike the previous maps, this one doesn't keep the initial territorial division to give a smoothed picture of the spatial patterns of GDP per capita in Italy. The result is easy to read and can be considered as a bypassing of the Modifiable Areal Unit Problem (MAUP).
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.