Nothing
Do Markov chain Monte Carlo (MCMC) simulation of Potts models (Potts, 1952, <doi:10.1017/S0305004100027419>), which are the multicolor generalization of Ising models (so, as as special case, also simulates Ising models). Use the SwendsenWang algorithm (Swendsen and Wang, 1987, <doi:10.1103/PhysRevLett.58.86>) so MCMC is fast. Do maximum composite likelihood estimation of parameters (Besag, 1975, <doi:10.2307/2987782>, Lindsay, 1988, <doi:10.1090/conm/080>).
Package details 


Author  Charles J. Geyer <charlie@stat.umn.edu> and Leif Johnson <ltjohnson@google.com> 
Maintainer  Charles J. Geyer <charlie@stat.umn.edu> 
License  GPL (>= 2) 
Version  0.59 
URL  http://www.stat.umn.edu/geyer/mcmc/ 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.