potts: Markov Chain Monte Carlo for Potts Models

Do Markov chain Monte Carlo (MCMC) simulation of Potts models (Potts, 1952, <doi:10.1017/S0305004100027419>), which are the multi-color generalization of Ising models (so, as as special case, also simulates Ising models). Use the Swendsen-Wang algorithm (Swendsen and Wang, 1987, <doi:10.1103/PhysRevLett.58.86>) so MCMC is fast. Do maximum composite likelihood estimation of parameters (Besag, 1975, <doi:10.2307/2987782>, Lindsay, 1988, <doi:10.1090/conm/080>).

Package details

AuthorCharles J. Geyer <charlie@stat.umn.edu> and Leif Johnson <ltjohnson@google.com>
MaintainerCharles J. Geyer <charlie@stat.umn.edu>
LicenseGPL (>= 2)
Version0.5-9
URL http://www.stat.umn.edu/geyer/mcmc/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("potts")

Try the potts package in your browser

Any scripts or data that you put into this service are public.

potts documentation built on March 23, 2020, 5:07 p.m.