inst/doc/mulder_power_2023.R

## ----setup, eval = FALSE, echo=FALSE------------------------------------------
#  library(powRICLPM)
#  library(ggplot2)
#  library(future)
#  library(progressr)

## ----preliminary-analysis, eval = FALSE---------------------------------------
#  # Matrix of standardized lagged effects
#  Phi <- matrix(c(0.20, 0.10, 0.15, 0.30), byrow = FALSE, ncol = 2)
#  # powRICLPM automatically computes Psi based on Phi and within_cor
#  
#  # Setup parallel processing to speed up computations
#  plan(multisession, workers = 6)
#  
#  # Perform preliminary power analysis (with progress bar)
#  with_progress({
#    out_preliminary <- powRICLPM(
#      target_power = 0.8,
#      search_lower = 200,
#      search_upper = 2000,
#      search_step = 100,
#      time_points = c(3, 4, 5),
#      ICC = c(0.3, 0.5, 0.7),
#      RI_cor = 0.35,
#      Phi = Phi,
#      within_cor = 0.26,
#      reps = 5,
#      seed = 123456
#    )
#  })
#  
#  # Tabular summary of results
#  summary(out_preliminary)
#  summary(out_preliminary, sample_size = 200, time_points = 3, ICC = 0.3, reliability = 1)
#  res_wB2wA1 <- give(out_preliminary, what = "results", parameter = "wB2~wA1")
#  
#  # Visualize power
#  p <- plot(x = out_preliminary, parameter = "wB2~wA1")
#  
#  # Tailor visualization for Mulder (under review)
#  p <- p +
#    labs(color = "Number of time points") +
#    scale_x_continuous(
#      name = "Sample size",
#      breaks = seq(200, 2000, 200),
#      guide = guide_axis(n.dodge = 2)
#    ) +
#    ggplot2::ylab("Power") +
#    ggplot2::guides(
#      color = ggplot2::guide_legend(title = "Time points", nrow = 1),
#      shape = ggplot2::guide_legend(title = "Reliability", nrow = 1),
#      fill = "none"
#    ) +
#    theme(legend.position = "bottom", text = element_text(size = 8))
#  p
#  ggsave("C:\\Users\\5879167\\surfdrive\\Research\\RICLPM - Power\\Mulder2023_preliminary_power.png", plot = p, height = 6, width = 7)

## ----validation, eval = FALSE-------------------------------------------------
#  # Setup parallel processing to speed up computations
#  plan(multisession, workers = 6)
#  
#  # Perform preliminary power analysis (with progress bar)
#  with_progress({
#    out_validation <- powRICLPM(
#      target_power = 0.8,
#      search_lower = 900,
#      search_upper = 1800,
#      search_step = 100,
#      time_points = c(4, 5),
#      ICC = c(0.3, 0.5, 0.7),
#      RI_cor = 0.35,
#      Phi = Phi,
#      within_cor = 0.26,
#      reps = 2000,
#      seed = 123456
#    )
#  })
#  
#  # Tabular summary of results
#  summary(out_validation, parameter = "wB2~wA1")
#  res_wB2wA1 <- give(out_validation, what = "results", parameter = "wB2~wA1")
#  
#  # Visualize power
#  p2 <- plot(out_validation, parameter = "wB2~wA1")
#  
#  # Tailor visualization of power for Mulder (2022)
#  p2 <- p2 +
#    labs(color = "Number of time points") +
#    scale_x_continuous(
#      name = "Sample size",
#      breaks = seq(900, 1800, 100),
#      guide = guide_axis(n.dodge = 2)) +
#    scale_color_manual(values = c("#00BA38", "#619CFF")) +
#    theme(legend.position = "bottom", text = element_text(size = 8))
#  p2
#  ggsave("Mulder2022_validation_power.png", height = 5, width = 7)

Try the powRICLPM package in your browser

Any scripts or data that you put into this service are public.

powRICLPM documentation built on Oct. 26, 2024, 5:14 p.m.