R/power_curve_predict.R

Defines functions predict.power_curve

Documented in predict.power_curve

#' @title Predict Method for a 'power_curve' Object
#'
#' @description Compute the predicted
#' values in a model fitted by
#' [power_curve()].
#'
#' @details
#' The `predict` method of `power_curve`
#' objects works in two modes.
#'
#' If new
#' data is not supplied (through
#' `newdata`), it retrieves the stored
#' results and calls the corresponding
#' methods to compute the predicted
#' values, which are the predicted
#' rejection rates (power levels if
#' the null hypothesis is false,
#' e.g., the population effect size is
#' equal to zero).
#'
#' If new data is supplied, such as
#' a named list with a vector of
#' sample sizes, they will be used to
#' compute the predicted rejection
#' rates.
#'
#' @return
#' It returns a numeric vector of
#' the predicted rejection rates.
#'
#' @param object A `power_curve`
#' object.
#'
#' @param newdata A data frame with
#' a column named `x`. It can also
#' be a named list, with one element
#' named `x` and is a vector of the
#' values. If not supplied, values of
#' `x` stored in `object` will be used.
#'
#' @param ...  Additional arguments.
#' Passed to the corresponding
#' `predict` method.
#'
#' @seealso [power_curve()].
#'
#' @examples
#'
#' # Specify the population model
#'
#' model_simple_med <-
#' "
#' m ~ x
#' y ~ m + x
#' "
#'
#' # Specify the effect sizes (population parameter values)
#'
#' model_simple_med_es <-
#' "
#' y ~ m: l
#' m ~ x: m
#' y ~ x: s
#' "
#'
#' # Simulate datasets to check the model
#' # Set `parallel` to TRUE for faster, usually much faster, analysis
#' # Set `progress` to TRUE to display the progress of the analysis
#'
#' sim_only <- power4test(nrep = 10,
#'                        model = model_simple_med,
#'                        pop_es = model_simple_med_es,
#'                        n = 50,
#'                        fit_model_args = list(fit_function = "lm"),
#'                        do_the_test = FALSE,
#'                        iseed = 1234,
#'                        parallel = FALSE,
#'                        progress = FALSE)
#'
#' # By n: Do a test for different sample sizes
#'
#' out1 <- power4test_by_n(sim_only,
#'                         nrep = 10,
#'                         test_fun = test_parameters,
#'                         test_args = list(par = "y~x"),
#'                         n = c(25, 100, 200, 1000),
#'                         by_seed = 1234,
#'                         parallel = FALSE,
#'                         progress = FALSE)
#'
#' pout1 <- power_curve(out1)
#' pout1
#' predict(pout1,
#'         newdata = list(x = c(150, 250, 500)))
#'
#' # By pop_es: Do a test for different population values of a model parameter
#'
#' out2 <- power4test_by_es(sim_only,
#'                              nrep = 10,
#'                              test_fun = test_parameters,
#'                              test_args = list(par = "y~x"),
#'                              pop_es_name = "y ~ x",
#'                              pop_es_values = seq(0, .7, .15),
#'                              by_seed = 1234,
#'                              parallel = FALSE,
#'                              progress = FALSE)
#'
#' pout2 <- power_curve(out2)
#' pout2
#' predict(pout2,
#'         newdata = list(x = c(.25, .55)))
#'
#' @export

predict.power_curve <- function(object,
                                newdata,
                                ...) {
  fit <- object$fit
  if (missing(newdata)) {
    newdata <- object$reject_df
  }
  if (inherits(fit, "glm")) {
    out <- stats::predict(object = fit,
                          newdata = newdata,
                          type = "response",
                          ...)
  } else {
    out <- stats::predict(object = fit,
                          newdata = newdata,
                          ...)
  }
  return(out)
}

Try the power4mome package in your browser

Any scripts or data that you put into this service are public.

power4mome documentation built on Sept. 9, 2025, 5:35 p.m.