powerNLSEM | R Documentation |
powerNLSEM function
powerNLSEM(
model,
POI,
method,
test = "onesided",
power_modeling_method = "probit",
search_method = "adaptive",
R = 2000,
power_aim = 0.8,
alpha = 0.05,
alpha_power_modeling = 0.05,
CORES = max(c(parallel::detectCores() - 2, 1)),
verbose = TRUE,
seed = NULL,
...
)
model |
Model in lavaan syntax. See documentation for help and examples. |
POI |
Parameter Of Interest as a vector of strings. Must be in lavaan-syntax without any spaces. Nonlinear effects should have the same ordering as in model. |
method |
Method used to fit to the data. Implemented methods are |
test |
Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to |
power_modeling_method |
Power modeling method used to model significant parameter estimates. Default to |
search_method |
String stating the search method. Default to |
R |
Total number of models to be fitted. Higher number results in higher precision and longer runtime. Default to 2000. |
power_aim |
Minimal power value to approximate. Default to |
alpha |
Type I-error rate for significance decision. Default to |
alpha_power_modeling |
Type I-error rate for confidence band around predicted power rate. Used to ensure that the computed |
CORES |
Number of cores used for parallelization. Default to number of available cores - 2. |
verbose |
Logical whether progress should be printed in console. Default to |
seed |
Seed for replicability. Default to |
... |
Additional arguments passed on to the search functions. |
Returns an list object of class powerNLSEM
.
Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457–474. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF02296338")}
Kelava, A., & Brandt, H. (2009). Estimation of nonlinear latent structural equation models using the extended unconstrained approach. Review of Psychology, 16(2), 123–132.
Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation Modeling, 17(3), 374–391. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2010.488999")}
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13(4), 497–519. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1207/s15328007sem1304_1")}
Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275–300. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1037/1082-989X.9.3.275")}
Ng, J. C. K., & Chan, W. (2020). Latent moderation analysis: A factor score approach. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 629–648. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2019.1664304")}.
Irmer, J. P., Klein, A. G., & Schermelleh-Engel, K. (2024a). A General Model-Implied Simulation-Based Power Estimation Method for Correctly and Misspecfied Models: Applications to Nonlinear and Linear Structural Equation Models. Behavior Research Methods. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.31219/osf.io/pe5bj")}
Irmer, J. P., Klein, A. G., & Schermelleh-Engel, K. (2024b). Estimating Power in Complex Nonlinear Structural Equation Modeling Including Moderation Effects: The powerNLSEM R
-Package. Behavior Research Methods. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3758/s13428-024-02476-3")}
For further details for specific uses see corresponding functions: power_search()
for all inputs possible, UPI()
for specifics for the unconstrained product indicator approach, LMS()
for the latent moderated structural equations approach, FSR()
for factor score approaches, SR()
for scale regression approaches.
# write model in lavaan syntax
model <- "
# measurement models
X =~ 1*x1 + 0.8*x2 + 0.7*x3
Y =~ 1*y1 + 0.85*y2 + 0.78*y3
Z =~ 1*z1 + 0.9*z2 + 0.6*z3
# structural models
Y ~ 0.3*X + .2*Z + .2*X:Z
# residual variances
Y~~.7975*Y
X~~1*X
Z~~1*Z
# covariances
X~~0.5*Z
# measurement error variances
x1~~.1*x1
x2~~.2*x2
x3~~.3*x3
z1~~.2*z1
z2~~.3*z2
z3~~.4*z3
y1~~.5*y1
y2~~.4*y2
y3~~.3*y3
"
# run model-implied simulation-based power estimation
# for the effects: c("Y~X", "Y~Z", "Y~X:Z")
Result_Power <- powerNLSEM(model = model, POI = c("Y~X", "Y~Z", "Y~X:Z"),
method = "UPI", search_method = "adaptive",
steps = 10, power_modeling_method = "probit",
R = 1000, power_aim = .8, alpha = .05,
alpha_power_modeling = .05,
CORES = 1, seed = 2024)
Result_Power
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.