WD_Linnet | R Documentation |
This routine, provided for convenience, makes Linnet’s constant CV fit.
WD_Linnet(X, Y, lambda=1, MDL=NA, getCI=TRUE, epsilon=1e-9, printem=FALSE)
X |
the vector of predicate readings, |
Y |
the vector of test readings, |
lambda |
ratio of g function to h function, |
MDL |
optional medical decision limit(s), |
getCI |
if TRUE, generates jackknife standard errors, |
epsilon |
optional tolerance limit, |
printem |
if TRUE, prints out results as a |
A list containing the following components:
alpha |
the fitted intercept |
beta |
the fitted slope |
cor |
the Pearson correlation between X and Y |
sealpha |
the jackknife standard error of alpha |
sebeta |
the jackknife standard error of beta |
covar |
the jackknife covariance between alpha and beta |
preMDL |
the predictions at the MDL(s) |
preMDLl |
the lower confidence limit(s) of preMDL |
preMDLu |
the upper confidence limit(s) of preMDL |
Douglas M. Hawkins, Jessica J. Kraker krakerjj@uwec.edu
Linnet K (1993). Evaluation of regression procedures for methods comparison studies. Clinical Chemistry, 39, 424-432.
# library
library(ppwdeming)
# parameter specifications
alpha <- 1
beta <- 1.1
true <- 8*10^((0:99)/99)
truey <- alpha+beta*true
kappa <- 0.1
# simulate single sample - set seed for reproducibility
set.seed(1039)
# specifications for predicate method
X <- true *(1+kappa*rnorm(100))
# specifications for test method
Y <- truey *(1+kappa*rnorm(100))
# fit with to estimate linear parameters
wd_fit <- WD_Linnet(X, Y, MDL=12, printem=TRUE)
cat("\nThe Linnet constant-CV estimated intercept is",
signif(wd_fit$alpha,4), "and the estimated slope is",
signif(wd_fit$beta,4), "\n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.