data | R Documentation |
Simulated data under high-dimensional linear, binary, group LASSO and quantile varying coefficient models
The data_linear object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable y
.
The data_binary object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable y
.
The data_group object consists of 4 components: g, y, e and coeff. coeff contains the true values of parameters used for generating the response variable y
.
The data_varying object consists of five components: g, y, u, e and coeff. coeff contains the true values of parameters used for generating the response variable y
.
Generating Y using a sparse linear (quantile) regression model
The true data generating model under sparse linear regression:
Y_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\epsilon_i,
where \epsilon_i\sim N(0,1)
, \beta_{0}=0
, \beta_{1}=1
, \beta_{2}=1.5
and \beta_3=2
.
Generating Y using a sparse binary (quantile) regression model
The true data generating model under sparse linear regression:
\tilde{Y}_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\epsilon_i,
where \epsilon_i\sim N(0,1)
, \beta_{0}=0
, \beta_{1}=0.22
, \beta_{2}=0.18
and \beta_3=0.14
.
Y_i=1
if \tilde{Y}_i>0
and Y_i=0
otherwise.
Generating Y using a high-dimensional group LASSO model
The true data generating model under a group LASSO model:
Y_i=\beta_0+\beta_{1}X_{i1}+\beta_{2}X_{i2}+\beta_{3}X_{i3}+\beta_{7}X_{i7}+\beta_{8}X_{i8}+\beta_{9}X_{i9}+\epsilon_i,
where \epsilon_i\sim N(0,1)
, \beta_{0}=0
, \beta_{1}=0.6
, \beta_{2}=0.7
,\beta_{3}=0.8
,\beta_{7}=0.65
, \beta_{8}=0.75
and \beta_{9}=0.85
.
Generating Y using a (quantile) varying coefficient model
Data generation under sparse (quantile) VC model:
Y_i=\gamma_0(v_i)+\gamma_1(v_i)X_{i1}+\gamma_2(v_i)X_{i2}+\gamma_3(v_i)X_{i3}+\epsilon_i,
where \epsilon_i\sim N(0,1)
, \gamma_{0}(v_i)=1.5\sin(0.2\pi*v_i
), \gamma_{1}(v_i)=2\exp(0.2v_i-1)-1.5
, \gamma_{2}(v_i)=2-2v_i
and \gamma_3(v_i)=-4+(v_i-2)^3/6
.
pqrBayes
data(data)
data = data$data_linear
g=data$g
dim(g)
y=data$y
coeff=data$coeff
print(coeff)
data = data$data_binary
g=data$g
dim(g)
y=data$y
coeff=data$coeff
print(coeff)
data = data$data_group
g=data$g
dim(g)
y=data$y
coeff=data$coeff
print(coeff)
data = data$data_varying
g=data$g
dim(g)
coeff=data$coeff
print(coeff)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.