plot_taus | R Documentation |
plot penalized quantile regression for several taus
plot_taus( Beta, tau = 1:9/10, D, col = 2, lwd = 1, lty = 2, pch = 16, cex.axis = 1, cex.lab = 1, main = "", shadow = "gray90" )
Beta |
Numeric array, with three dimmensions: 1) tau, 2) coef., lower bound, upper bound, 3) exploratory variables. |
tau |
Numeric vector, identifies the percentiles. |
D |
covariate's number. |
col |
color. |
lwd |
line width. |
lty |
line type. |
pch |
point character. |
cex.axis |
cex axis length. |
cex.lab |
cex axis length. |
main |
title. |
shadow |
color of the Confidence Interval 95% |
None
n = 10 m = 5 d = 4 N = n*m L = N*d x = matrix(rnorm(L), ncol=d, nrow=N) subj = rep(1:n, each=m) alpha = rnorm(n) beta = rnorm(d) eps = rnorm(N) y = as.vector(x %*% beta + rep(alpha, each=m) + eps) Beta = mpqr(x,y,subj,tau=1:9/10, effect="lasso", c = Inf) plot_taus(Beta,tau=1:9/10,D=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.