Nothing
A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Package details |
|
---|---|
Author | Lu Tian [aut] (<https://orcid.org/0000-0002-5893-0169>), Xiaotong Jiang [aut] (<https://orcid.org/0000-0003-3698-4526>), Gabrielle Simoneau [aut] (<https://orcid.org/0000-0001-9310-6274>), Biogen MA Inc. [cph], Thomas Debray [ctb, cre] (<https://orcid.org/0000-0002-1790-2719>), Stan Wijn [ctb] (<https://orcid.org/0000-0003-3782-6677>), Joana Caldas [ctb] |
Maintainer | Thomas Debray <tdebray@fromdatatowisdom.com> |
License | Apache License (== 2.0) |
Version | 1.1.0 |
URL | https://github.com/smartdata-analysis-and-statistics/precmed https://smartdata-analysis-and-statistics.github.io/precmed/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.