precmed: Precision Medicine

A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.

Getting started

Package details

AuthorLu Tian [aut] (<https://orcid.org/0000-0002-5893-0169>), Xiaotong Jiang [aut] (<https://orcid.org/0000-0003-3698-4526>), Gabrielle Simoneau [aut] (<https://orcid.org/0000-0001-9310-6274>), Biogen MA Inc. [cph], Thomas Debray [ctb, cre] (<https://orcid.org/0000-0002-1790-2719>), Stan Wijn [ctb] (<https://orcid.org/0000-0003-3782-6677>), Joana Caldas [ctb]
MaintainerThomas Debray <tdebray@fromdatatowisdom.com>
LicenseApache License (== 2.0)
Version1.1.0
URL https://github.com/smartdata-analysis-and-statistics/precmed https://smartdata-analysis-and-statistics.github.io/precmed/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("precmed")

Try the precmed package in your browser

Any scripts or data that you put into this service are public.

precmed documentation built on Oct. 6, 2024, 1:07 a.m.