Nothing
#' precrec: A package for computing accurate ROC and Precision-Recall curves
#'
#' The precrec package contains several functions and \code{S3} generics to
#' provide a robust platform for performance evaluation of binary classifiers.
#'
#' @section Functions:
#' The precrec package provides the following six functions.
#'
#' \tabular{ll}{
#' \strong{Function} \tab \strong{Description} \cr
#' \code{\link{evalmod}}
#' \tab Main function to calculate evaluation measures \cr
#' \code{\link{mmdata}}
#' \tab Reformat input data for performance evaluation calculation \cr
#' \code{\link{join_scores}}
#' \tab Join scores of multiple models into a list \cr
#' \code{\link{join_labels}}
#' \tab Join observed labels of multiple test datasets into a list \cr
#' \code{\link{create_sim_samples}}
#' \tab Create random samples for simulations \cr
#' \code{\link{format_nfold}}
#' \tab Create n-fold cross validation dataset from data frame
#' }
#'
#' @section S3 generics:
#' The precrec package provides nine different \code{S3} generics for the
#' \code{S3} objects generated by the \code{\link{evalmod}} function.
#'
#' \tabular{lll}{
#' \strong{S3 generic}
#' \tab \strong{Library}
#' \tab \strong{Description} \cr
#' \code{print}
#' \tab base
#' \tab Print the calculation results and the summary of the test data \cr
#' \code{\link{as.data.frame}}
#' \tab base
#' \tab Convert a precrec object to a data frame \cr
#' \code{\link{plot}}
#' \tab graphics
#' \tab Plot performance evaluation measures \cr
#' \code{\link{autoplot}}
#' \tab ggplot2
#' \tab Plot performance evaluation measures with ggplot2 \cr
#' \code{\link{fortify}}
#' \tab ggplot2
#' \tab Prepare a data frame for ggplot2 \cr
#' \code{\link{auc}}
#' \tab precrec
#' \tab Make a data frame with AUC scores \cr
#' \code{\link{part}}
#' \tab precrec
#' \tab Calculate partial curves and partial AUC scores \cr
#' \code{\link{pauc}}
#' \tab precrec
#' \tab Make a data frame with pAUC scores \cr
#' \code{\link{auc_ci}}
#' \tab precrec
#' \tab Calculate confidence intervals of AUC scores
#' }
#'
#' @section Performance measure calculations:
#' The \code{\link{evalmod}} function calculates ROC and Precision-Recall
#' curves and returns an \code{S3} object. The generated \code{S3} object can
#' be used with several different \code{S3} generics, such as \code{print} and
#' \code{\link{plot}}. The \code{\link{evalmod}} function can also
#' calculate basic evaluation measures - error rate, accuracy, specificity,
#' sensitivity, precision, Matthews correlation coefficient, and F-Score.
#'
#' @section Data preparation:
#' The \code{\link{mmdata}} function creates an input dataset for
#' the \code{\link{evalmod}} function. The generated dataset contains
#' formatted scores and labels.
#'
#' \code{\link{join_scores}} and \code{\link{join_labels}} are helper
#' functions to combine multiple scores and labels.
#'
#' The \code{\link{create_sim_samples}} function creates test datasets with
#' five different performance levels.
#'
#' @section Data visualization:
#' \code{\link{plot}} takes an \code{S3} object generated
#' by \code{\link{evalmod}} as input and plot corresponding curves.
#'
#' \code{\link{autoplot}} uses \code{ggplot} to plot curves.
#'
#' @section Result retrieval:
#' \code{\link{as.data.frame}} takes an \code{S3} object generated
#' by \code{\link{evalmod}} as input and and returns a data frame
#' with calculated curve points.
#'
#' \code{\link{auc}} and \code{\link{pauc}} returns a data frame with AUC scores
#' and partial AUC scores, respectively. \code{\link{auc_ci}}
#' returns confidence intervals of AUCs for both ROC
#' and precision-recall curves.
#'
#'
#' @docType package
#' @name precrec
#'
#' @useDynLib precrec, .registration = TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom ggplot2 autoplot
#' @importFrom ggplot2 fortify
#' @importFrom grDevices col2rgb rainbow rgb
#' @importFrom graphics abline layout legend lines
#' @importFrom graphics matplot plot plot.new polygon
#' @importFrom methods is
#' @importFrom rlang sym
#' @importFrom stats qnorm rbeta rnorm sd qt
#' @importFrom data.table frank
#'
NULL
.onUnload <- function(libpath) {
library.dynam.unload("precrec", libpath)
}
#' Balanced data with 500 positives and 500 negatives.
#'
#' A list contains labels and scores of five different performance levels.
#' All scores were randomly generated.
#'
#' @format A list with 8 items.
#' \describe{
#' \item{np}{number of positives: 500}
#' \item{nn}{number of negatives: 500}
#' \item{labels}{labels of observed data}
#' \item{random_scores}{scores of a random performance level}
#' \item{poor_er_scores}{scores of a poor early retrieval level}
#' \item{good_er_scores}{scores of a good early retrieval level}
#' \item{excel_scores}{scores of an excellent level}
#' \item{perf_scores}{scores of the perfect level}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name B500
#' @usage data(B500)
NULL
#' Balanced data with 1000 positives and 1000 negatives.
#'
#' A list contains labels and scores of five different performance levels.
#' All scores were randomly generated.
#'
#' @format A list with 8 items.
#' \describe{
#' \item{np}{number of positives: 1000}
#' \item{nn}{number of negatives: 1000}
#' \item{labels}{labels of observed data}
#' \item{random_scores}{scores of a random performance level}
#' \item{poor_er_scores}{scores of a poor early retrieval level}
#' \item{good_er_scores}{scores of a good early retrieval level}
#' \item{excel_scores}{scores of an excellent level}
#' \item{perf_scores}{scores of the perfect level}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name B1000
#' @usage data(B1000)
NULL
#' Imbalanced data with 500 positives and 5000 negatives.
#'
#' A list contains labels and scores of five different performance levels.
#' All scores were randomly generated.
#'
#' @format A list with 8 items.
#' \describe{
#' \item{np}{number of positives: 500}
#' \item{nn}{number of negatives: 5000}
#' \item{labels}{labels of observed data}
#' \item{random_scores}{scores of a random performance level}
#' \item{poor_er_scores}{scores of a poor early retrieval level}
#' \item{good_er_scores}{scores of a good early retrieval level}
#' \item{excel_scores}{scores of an excellent level}
#' \item{perf_scores}{scores of the perfect level}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name IB500
#' @usage data(IB500)
NULL
#' Imbalanced data with 1000 positives and 10000 negatives.
#'
#' A list contains labels and scores of five different performance levels.
#' All scores were randomly generated.
#'
#' @format A list with 8 items.
#' \describe{
#' \item{np}{number of positives: 1000}
#' \item{nn}{number of negatives: 10000}
#' \item{labels}{labels of observed data}
#' \item{random_scores}{scores of a random performance level}
#' \item{poor_er_scores}{scores of a poor early retrieval level}
#' \item{good_er_scores}{scores of a good early retrieval level}
#' \item{excel_scores}{scores of an excellent level}
#' \item{perf_scores}{scores of the perfect level}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name IB1000
#' @usage data(IB1000)
NULL
#' A small example dataset with several tied scores.
#'
#' A list contains labels and scores for 10 positives and 10 negatives.
#'
#' @format A list with 4 items.
#' \describe{
#' \item{np}{number of positives: 10}
#' \item{nn}{number of negatives: 10}
#' \item{labels}{20 labels of observed data}
#' \item{scores}{20 scores with some ties}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name P10N10
#' @usage data(P10N10)
NULL
#' 5-fold cross validation sample.
#'
#' A data frame contains labels and scores for 5-fold test sets.
#'
#' @format A data frame with 4 columns.
#' \describe{
#' \item{score1}{50 random scores}
#' \item{score2}{50 random scores}
#' \item{label}{50 labels as 'pos' or 'neg'}
#' \item{fold}{50 fold IDs as 1:5}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name M2N50F5
#' @usage data(M2N50F5)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.