Nothing
# global reference to scipy (will be initialized in .onLoad)
# scipy <- NULL
# tf <- NULL
# layers <- NULL
# activations <- NULL
# python 'scipy' module I want to use in my package
keras <- NULL
.onLoad <- function(libname, pkgname) {
# delay load foo module (will only be loaded when accessed via $)
keras <<- keras::implementation()}
#.onLoad <- function(libname, pkgname) {
# create layer TransformerBlock
# TransformerBlock <- keras::new_layer_class(
# classname = "TransformerBlock",
# initialize = function(self, embed_dim, num_heads, ff_dim, rate = 0.1) {
# super$initialize()
#
# self$att <- keras::layer_multi_head_attention(num_heads=num_heads, key_dim=embed_dim)
# self$ffn <- keras::keras_model_sequential() %>%
# layer_dense(ff_dim, activation="relu") %>%
# layer_dense(embed_dim)
#
# self$layernorm_a <- keras::layer_layer_normalization(epsilon=1e-6) #LayerNormalization(epsilon=1e-6)
# self$layernorm_b <- keras::layer_layer_normalization(epsilon=1e-6) # OF layer_layer_normalization
# self$dropout_a <- keras::layer_dropout(rate=0.1) #layers.Dropout(rate)
# self$dropout_b <- keras::layer_dropout(rate=0.1)
# },
# call = function(self, inputs, training) {
# attn_output <- self$att(inputs, inputs)
# attn_output <- self$dropout_a(attn_output, training=training)
# out_a <- self$layernorm_a(inputs + attn_output)
# ffn_output <- self$ffn(out_a)
# ffn_output <- self$dropout_b(ffn_output, training=training)
# return(self$layernorm_b(out_a + ffn_output))
# }
# )
# assign("TransformerBlock", TransformerBlock, envir = globalenv())
#
# # create layer TokenAndPositionEmbedding
# TokenAndPositionEmbedding <- keras::new_layer_class(
# classname = "TokenAndPositionEmbedding",
# initialize = function(self, maxlen, vocab_size, embed_dim) {
# super$initialize()
#
# self$token_emb <- keras::layer_embedding(input_dim = vocab_size, output_dim = embed_dim) #layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
# self$pos_emb <- keras::layer_embedding(input_dim = maxlen, output_dim = embed_dim) #layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
#
# },
# call = function(self, x) {
# maxlen <- tf$shape(x)[-1] #tf.shape(x)[-1] NA, NULL, -1 is all the same
# positions <- tf$range(start=0, limit=maxlen, delta=1)
# positions <- self$pos_emb(positions)
# x <- self$token_emb(x)
# return(x + positions)
# }
# )
# assign("TokenAndPositionEmbedding", TokenAndPositionEmbedding, envir = globalenv())
# reticulate::configure_environment(pkgname)
#
# # use superassignment to update global reference to scipy
# scipy <<- reticulate::import("scipy", delay_load = TRUE)
#
# tf <<- reticulate::import("tensorflow", delay_load = TRUE)
# layers <<- reticulate::import("keras", delay_load = TRUE)$layers
# activations <<- reticulate::import("keras", delay_load = TRUE)$activations
#}
# tf <- import("tensorflow")
# layers <- import("keras")$layers
# activations <- import("keras")$activations
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.