| lhmm | R Documentation | 
Maximum marginalized likelihood estimation of LHMM.
Marginalization over latent trait is computed numerically using Guassian-Hermite quadratures from statmod.
Optimization is performed through optim.
lhmm(action_seqs, K, paras, n_pts = 100, verbose = TRUE, ...)
action_seqs | 
 a list of   | 
K | 
 number of hidden states  | 
paras | 
 a list of elements named   | 
n_pts | 
 number of quadrature points  | 
verbose | 
 logical. If   | 
... | 
 additional arguments passed to   | 
A list containing the following elements
seqs  | action sequences coded in integers | 
K  | number of hidden states | 
N  | number of distinct actions | 
paras_init  | a list containing initial values of parameters | 
paras_est  | a list containing parameter estimates | 
theta_est  |  a vector of length n. estimated latent traits  | 
init_mllh  | initial value of the marginalized likelihood function | 
opt_mllh  | maximized marginalized likelihood function | 
opt_res  |  object returned by optim  | 
# generate data
paras_true <- sim_lhmm_paras(5, 2)
sim_data <- sim_lhmm(10, paras_true, 3, 5)
# randomly initialize parameters
paras_init <- sim_lhmm_paras(5, 2)
# fit model
lhmm_res <- lhmm(sim_data$seqs, 2, paras_init)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.