Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Create sample data
# cls <- read.table(header = TRUE, text = '
# Name Sex Age Height Weight
# Alfred M 14 69.0 112.5
# Alice F 13 56.5 84.0
# Barbara F 13 65.3 98.0
# Carol F 14 62.8 102.5
# Henry M 14 63.5 102.5
# James M 12 57.3 83.0
# Jane F 12 59.8 84.5
# Janet F 15 62.5 112.5
# Jeffrey M 13 62.5 84.0
# John M 12 59.0 99.5
# Joyce F 11 51.3 50.5
# Judy F 14 64.3 90.0
# Louise F 12 56.3 77.0
# Mary F 15 66.5 112.0
# Philip M 16 72.0 150.0
# Robert M 12 64.8 128.0
# Ronald M 15 67.0 133.0
# Thomas M 11 57.5 85.0
# William M 15 66.5 112.0')
#
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Turn off printing for CRAN checks
# options("procs.print" = FALSE)
#
# # Basic operation
# proc_reg(cls, Weight ~ Height)
#
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Output dataset
# res1 <- proc_reg(cls, Weight ~ Height)
#
# # View results
# res1
# # MODEL TYPE DEPVAR RMSE Intercept Height Weight
# # 1 MODEL1 PARMS Weight 11.22625 -143.0269 3.89903 -1
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Output dataset using "outseb" option
# res2 <- proc_reg(cls, Weight ~ Height, options = outseb)
#
# # View results
# res2
# # MODEL TYPE DEPVAR RMSE Intercept Height Weight
# # 1 MODEL1 PARMS Weight 11.22625 -143.02692 3.8990303 -1
# # 2 MODEL1 SEB Weight 11.22625 32.27459 0.5160939 -1
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Output dataset using "press" and "edf" options
# res3 <- proc_reg(cls, Weight ~ Height, options = v(press, edf))
#
# # View results
# res3
# # MODEL TYPE DEPVAR RMSE PRESS Intercept Height Weight IN P EDF RSQ
# # 1 MODEL1 PARMS Weight 11.22625 2651.352 -143.0269 3.89903 -1 1 2 17 0.7705068
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Output dataset using "tableout" option
# res3 <- proc_reg(cls, Weight ~ Height, options = tableout)
#
# # View results
# res3
# # MODEL TYPE DEPVAR RMSE Intercept Height Weight
# # 1 MODEL1 PARMS Weight 11.22625 -1.430269e+02 3.899030e+00 -1
# # 2 MODEL1 STDERR Weight 11.22625 3.227459e+01 5.160939e-01 NA
# # 3 MODEL1 T Weight 11.22625 -4.431564e+00 7.554885e+00 NA
# # 4 MODEL1 PVALUE Weight 11.22625 3.655789e-04 7.886816e-07 NA
# # 5 MODEL1 L95B Weight 11.22625 -2.111204e+02 2.810167e+00 NA
# # 6 MODEL1 U95B Weight 11.22625 -7.493348e+01 4.987893e+00 NA
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Output dataset using "report" output
# res4 <- proc_reg(cls, Weight ~ Height, output = "report")
#
# # View results
# res4
# # $Observations
# # stub NOBS
# # 1 Number of Observations Read 19
# # 2 Number of Observations Used 19
# #
# # $ANOVA
# # stub DF SUMSQ MEANSQ FVAL PROBF
# # 1 Model 1 7193.249 7193.2491 57.07628 7.886816e-07
# # 2 Error 17 2142.488 126.0287 NA NA
# # 3 Corrected Total 18 9335.737 NA NA NA
# #
# # $Fitness
# # RMSE DEPMEAN COEFVAR RSQ ADJRSQ
# # 1 11.22625 100.0263 11.2233 0.7705068 0.7570072
# #
# # $Coefficients
# # stub DF EST STDERR T PROBT
# # 1 Intercept 1 -143.02692 32.2745913 -4.431564 3.655789e-04
# # 2 Height 1 3.89903 0.5160939 7.554885 7.886816e-07
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # View report using "clb" option
# proc_reg(cls, Weight ~ Height, stats = clb)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # View report using "hcc" option
# proc_reg(cls, Weight ~ Height, stats = hcc)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # View report using "p" option
# proc_reg(cls, Weight ~ Height, stats = p)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # By grouping
# res5 <- proc_reg(cls, Weight ~ Height, by = Sex)
#
# # View results
# res5
# # BY MODEL TYPE DEPVAR RMSE Intercept Height Weight
# # 1 F MODEL1 PARMS Weight 9.586849 -117.3698 3.424405 -1
# # 2 M MODEL1 PARMS Weight 12.695426 -141.1010 3.912549 -1
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Multiple Models
# res6 <- proc_reg(cls, list(Weight ~ Height,
# Weight ~ Height + Age))
#
# # View results
# res6
# # MODEL TYPE DEPVAR RMSE Intercept Height Weight Age
# # 1 MODEL1 PARMS Weight 11.22625 -143.0269 3.899030 -1 NA
# # 2 MODEL2 PARMS Weight 11.51114 -141.2238 3.597027 -1 1.278393
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# # Shape wide
# res7 <- proc_reg(cls, Weight ~ Height,
# option = outseb, output = wide)
#
# # Wide results
# res7
# # MODEL TYPE DEPVAR RMSE Intercept Height Weight
# # 1 MODEL1 PARMS Weight 11.22625 -143.02692 3.8990303 -1
# # 2 MODEL1 SEB Weight 11.22625 32.27459 0.5160939 -1
#
# # Shape long
# res8 <- proc_reg(cls, Weight ~ Height,
# option = outseb, output = long)
#
# # Long results
# res8
# # MODEL DEPVAR STAT PARMS SEB
# # 1 MODEL1 Weight RMSE 11.22625 11.2262500
# # 2 MODEL1 Weight Intercept -143.02692 32.2745913
# # 3 MODEL1 Weight Height 3.89903 0.5160939
# # 4 MODEL1 Weight Weight -1.00000 -1.0000000
#
# # Shape stacked
# res9 <- proc_reg(cls, Weight ~ Height,
# options = outseb, output = stacked)
#
# # Stacked results
# res9
# # MODEL DEPVAR TYPE STAT VALUES
# # 1 MODEL1 Weight PARMS RMSE 11.2262500
# # 2 MODEL1 Weight PARMS Intercept -143.0269184
# # 3 MODEL1 Weight PARMS Height 3.8990303
# # 4 MODEL1 Weight PARMS Weight -1.0000000
# # 5 MODEL1 Weight SEB RMSE 11.2262500
# # 6 MODEL1 Weight SEB Intercept 32.2745913
# # 7 MODEL1 Weight SEB Height 0.5160939
# # 8 MODEL1 Weight SEB Weight -1.0000000
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.