pams: Profile Analysis via Multidimensional Scaling

Description Usage Arguments Details Value References See Also Examples

Description

The pams function implements profile analysis via multidimensional scaling as described by Davison, Davenport, and Bielinski (1995) and Davenport, Ding, and Davison (1995).

Usage

1

Arguments

data

A data matrix or data frame; rows represent individuals, columns represent scores; missing scores are not allowed.

dim

Number of dimensions to be extracted from the data.

Details

The pams function computes similarity/dissimilarity indices based on Euclidean distances between the scores provided in the data, and then extracts dimensional coordinates for each score using multidimensional scaling. A weight matrix, level parameters, and fit measures are computed for each subject in the data.

Value

References

Davenport, E. C., Ding, S., & Davison, M. L. (1995). PAMS: SAS Template.

Davison, M. L., Davenport, E. C., & Bielinski, J. (1995). PAMS: SPSS Template.

See Also

cpa, pr

Examples

1
2
3
4
5
6
## Not run: 
data(PS)
result <- pams(PS[,2:4], dim=2)
result

## End(Not run)

Example output

Loading required package: ggplot2
Loading required package: RColorBrewer
Loading required package: reshape
Loading required package: lavaan
This is lavaan 0.5-23.1097
lavaan is BETA software! Please report any bugs.
$weights.matrix
     weight1 weight2 level R.sq
[1,]     1.5 0.00000    70    1
[2,]     1.5 0.00000    40    1
[3,]     0.0 2.12132    70    1
[4,]     0.0 2.12132    40    1
[5,]    -1.5 0.00000    70    1
[6,]    -1.5 0.00000    40    1

$dimensional.configuration
    Dimension1 Dimension2
Neu  -6.666667  -2.357023
Psy   0.000000   4.714045
CD    6.666667  -2.357023

profileR documentation built on May 2, 2019, 8:31 a.m.