Combine probabilistic forecasts using CRPS learning algorithms proposed in Berrisch, Ziel (2021) <doi:10.48550/arXiv.2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The package implements multiple online learning algorithms like Bernstein online aggregation; see Wintenberger (2014) <doi:10.48550/arXiv.1404.1356>. Quantile regression is also implemented for comparison purposes. Model parameters can be tuned automatically with respect to the loss of the forecast combination. Methods like predict(), update(), plot() and print() are available for convenience. This package utilizes the optim C++ library for numeric optimization <https://github.com/kthohr/optim>.
Package details |
|
---|---|
Author | Jonathan Berrisch [aut, cre] (<https://orcid.org/0000-0002-4944-9074>), Florian Ziel [aut] (<https://orcid.org/0000-0002-2974-2660>) |
Maintainer | Jonathan Berrisch <Jonathan@Berrisch.biz> |
License | GPL (>= 3) |
Version | 1.3.3 |
URL | https://profoc.berrisch.biz https://github.com/BerriJ/profoc |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.