Nothing
## ---- echo = FALSE, out.width = "100%"----------------------------------------
knitr::include_graphics("../man/figures/promor_ProtAnalysisFlowChart_small.png")
## ----example, results = 'hide', warning=FALSE, eval = FALSE-------------------
# # Load promor
# library(promor)
#
# # Create a raw_df object with the files provided in this github account.
# raw <- create_df(
# prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt",
# exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt"
# )
#
# # Filter out proteins with high levels of missing data in either condition/group
# raw_filtered <- filterbygroup_na(raw)
#
# # Impute missing data and create an imp_df object.
# imp_df <- impute_na(raw_filtered)
#
# # Normalize data and create a norm_df object
# norm_df <- normalize_data(imp_df)
#
# # Perform differential expression analysis and create a fit_df object
# fit_df <- find_dep(norm_df)
## ----volcanoplot, warning = FALSE, dpi = 300, out.width = '70%', fig.align ='center', eval = FALSE----
# volcano_plot(fit_df, text_size = 5)
## ---- echo = FALSE, out.width = "100%"----------------------------------------
knitr::include_graphics("../man/figures/promor_ProtModelingFlowChart_small.png")
## ----modeling_example, results = 'hide', warning = FALSE,message = F, eval = FALSE----
# # First, let's make a model_df object of top differentially expressed proteins.
# # We will be using example fit_df and norm_df objects provided with the package.
# covid_model_df <- pre_process(
# fit_df = covid_fit_df,
# norm_df = covid_norm_df
# )
# # Next, we split the data into training and test data sets
# covid_split_df <- split_data(model_df = covid_model_df)
#
# # Let's train our models using the default list of machine learning algorithms
# covid_model_list <- train_models(split_df = covid_split_df)
#
# # We can now use our models to predict the test data
# covid_prob_list <- test_models(
# model_list = covid_model_list,
# split_df = covid_split_df
# )
## ----rocplot, warning = FALSE, dpi = 300, out.width = '90%', fig.align ='center', message = F, eval = FALSE----
#
# roc_plot(
# probability_list = covid_prob_list,
# split_df = covid_split_df
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.