Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval=FALSE--------------------------------------------------------------
# vignette("intro_to_promor")
## ---- eval=FALSE--------------------------------------------------------------
# vignette("promor_no_techreps")
## ---- eval=FALSE--------------------------------------------------------------
# vignette("promor_with_techreps")
## ----preprocess, warning=FALSE, message=FALSE---------------------------------
# Load promor
library(promor)
#Create a model_df object with the top differentially expressed proteins.
covid_model_df <- pre_process(fit_df = covid_fit_df,
norm_df = covid_norm_df)
#Let's take a look at the first few rows of the model_df object
head(covid_model_df)
## ----featureplot, dpi = 300, out.width = '90%', fig.asp=2, fig.align ='center', warning = FALSE, message = F----
#Box plots (default) to visualize feature variation
feature_plot(model_df = covid_model_df,
n_row = 4,
n_col = 2)
## ----featureplot_d, dpi = 300, out.width = '90%', fig.asp=2, fig.align ='center', warning = FALSE, message = F----
#Alternatively, make density plots
feature_plot(model_df = covid_model_df,
type = "density",
n_row = 4,
n_col = 2)
## ----splitdata, warning = FALSE, message = F----------------------------------
#Create a split_df object by splitting data into training and test data set
covid_split_df <- split_data(model_df = covid_model_df)
## ----accesssplits, eval=FALSE, warning = FALSE, message = FALSE---------------
# #You can access the items in the training data set as follows,
# covid_split_df$training
# #Similarly, access the test data set
# covid_split_df$test
## ----traindata, warning = FALSE, message = F, eval = TRUE---------------------
#Create a model_list object by training models on the training data set using the default list of algorithms.
covid_model_list <- train_models(split_df = covid_split_df)
## ----customalgo, warning = FALSE, message = F, eval=FALSE---------------------
# #Alternatively, you may use a custom list of algorithms.
# covid_model_list <- train_models(split_df = covid_split_df,
# algorithm_list = c("glm", "rf"))
## ----performplot, dpi = 300, out.width = '80%', fig.asp=1, fig.align ='center', warning = FALSE, message = F----
#Box plots (default) to visualize model performance
performance_plot(model_list = covid_model_list)
## ----performplotd, dpi = 300, out.width = '80%', fig.asp=1, fig.align ='center', warning = FALSE, message = F----
#Make dot plots
performance_plot(model_list = covid_model_list,
type = "dot")
## ----varimpl, dpi = 300, out.width = '80%', fig.asp=1, fig.align ='center', warning = FALSE, message = F----
#Make lollipop plots (default)
varimp_plot(model_list = covid_model_list,
text_size = 7,
n_row = 2,
n_col = 2)
## ----varimpb, dpi = 300, out.width = '80%', fig.asp=1, fig.align ='center', warning = FALSE, message = F----
#Make bar plots
varimp_plot(model_list = covid_model_list,
type = "bar",
text_size = 7,
n_row = 2,
n_col = 2)
## ----testdata, warning = FALSE, message = F-----------------------------------
#First we run the function with type = "prob" to get a probability list
covid_prob_list <- test_models(model_list = covid_model_list,
split_df = covid_split_df,
type = "prob" )
## ----testdatar, warning = FALSE, message = F, eval = FALSE--------------------
# #We run the function with type = "raw" to get a prediction list and output a confusion matrix
# covid_pred_list <- test_models(model_list = covid_model_list,
# split_df = covid_split_df,
# type = "raw",
# save_confusionmatrix = TRUE)
## ----rocplot, dpi = 300, out.width = '80%', fig.asp=1, fig.align ='center', warning = FALSE, message = F----
#Make bar plots
roc_plot(probability_list = covid_prob_list,
split_df = covid_split_df)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.