Nothing
# This isn't going to test whether anything is actually correct (see individiual
# tests for that), but instead will run each different variation of `lm` call
# and ensure that no messages, warnings, or errors are produced.
# ******************** IMPORTANT ********************
# If debugging things in here, REMOVE EXPECT_SILENT!!! Running it will suppress
# all output, including inside `browser()`
test_that("binary treatment, in all data", {
# Treatment exists in data
data(simdata)
spec <- rct_spec(z ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
camod <- lm(y ~ x, data = simdata)
# Weight alone
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata, weights = ate(spec))))
expect_silent(as.lmitt(lm(y ~ a.(), data = simdata, weights = ate(spec))))
expect_silent(as.lmitt(lm(y ~ z.(), data = simdata, weights = ate(spec))))
expect_silent(as.lmitt(lm(y ~ adopters(), data = simdata, weights = ate(spec))))
# Adopters alone
expect_silent(a <- lm(y ~ assigned(spec), data = simdata))
# teeMod doesnt look in assigned for StudySpecification
# expect_silent(as.lmitt(a))
# cov_adj alone
expect_silent(as.lmitt(lm(y ~ a.(), data = simdata,
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ z.(spec) + offset(cov_adj(camod, specification = spec)),
data = simdata)))
# Weight + assigned
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
weights = ett(spec))))
# weight + cov_adj
expect_silent(as.lmitt(lm(y ~ z.(), data = simdata, weights = ett(spec),
offset = cov_adj(camod))))
expect_silent(as.lmitt(lm(y ~ adopters(), data = simdata, weights = ett(),
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ a.(), data = simdata, weights = ett(spec),
offset = cov_adj(camod, specification = spec))))
# weight + cov_adj in formula
expect_silent(as.lmitt(lm(y ~ z.() + offset(cov_adj(camod)), data = simdata,
weights = ett(spec))))
# Fails when trying to obtain StudySpecification from a cov_adj inside offset in formula
#expect_silent(as.lmitt(lm(y ~ z.() + offset(cov_adj(camod, specification = spec)),
# data = simdata, weights = ett())))
expect_silent(as.lmitt(lm(y ~ z.() + offset(cov_adj(camod, specification = spec)),
data = simdata, weights = ett(spec))))
# assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
offset = cov_adj(camod, specification = spec))))
# weights + assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec),
offset = cov_adj(camod))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(),
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec),
offset = cov_adj(camod, specification = spec))))
# weight + adopter + cov_adj in formula
expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod)),
data = simdata, weights = ett(spec))))
# Fails when trying to obtain StudySpecification from a cov_adj inside offset in formula
#expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod, specification = spec)),
# data = simdata, weights = ett()))
expect_silent(as.lmitt(lm(y ~ assigned() +
offset(cov_adj(camod, specification = spec)),
data = simdata, weights = ett(spec))))
})
test_that("binary treatment, not in data2", {
# Treatment doesn't exist in data
data(simdata)
spec <- rct_spec(z ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
camod <- lm(y ~ x, data = simdata)
simdata$z <- NULL
# Adopters alone
expect_silent(a <- lm(y ~ assigned(spec), data = simdata))
# teeMod doesnt look in assigned for StudySpecification
# expect_silent(as.lmitt(a))
# Weight + assigned
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
weights = ett(spec))))
# assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
offset = cov_adj(camod, specification = spec))))
# weights + assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec),
offset = cov_adj(camod))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(),
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec),
offset = cov_adj(camod, specification = spec))))
# weight + adopter + cov_adj in formula
expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod)),
data = simdata, weights = ett(spec))))
# Fails when trying to obtain StudySpecification from a cov_adj inside offset in formula
#expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod, specification = spec)),
# data = simdata, weights = ett()))
expect_silent(as.lmitt(lm(y ~ assigned() +
offset(cov_adj(camod, specification = spec)),
data = simdata, weights = ett(spec))))
})
test_that("non-binary treatment, in all data, dichotomization in specification", {
# Treatment exists in data
data(simdata)
spec <- rct_spec(dose ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
camod <- lm(y ~ x, data = simdata)
# Adopters alone
expect_silent(a <- lm(y ~ assigned(spec, dichotomy = dose >= 200 ~ .), data = simdata))
# teeMod doesnt look in assigned for StudySpecification
# expect_silent(as.lmitt(a))
# Weight + assigned
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .))))
# assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(dichotomy = dose >= 200 ~ .), data = simdata,
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec, dichotomy = dose >= 200 ~ .), data = simdata,
offset = cov_adj(camod, specification = spec))))
# weights + assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod, specification = spec))))
# weight + adopter + cov_adj in formula
expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod)),
data = simdata, weights = ett(spec, dichotomy = dose >= 200 ~ .))))
# Fails when trying to obtain StudySpecification from a cov_adj inside offset in formula
#expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod, specification = spec)),
# data = simdata, weights = ett()))
expect_silent(as.lmitt(lm(y ~ assigned() +
offset(cov_adj(camod, specification = spec)),
data = simdata, weights = ett(spec, dichotomy = dose >= 200 ~ .))))
})
test_that("non-binary treatment, not in data2, dichotomization in specification", {
# Treatment exists in data
data(simdata)
spec <- rct_spec(dose ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
camod <- lm(y ~ x, data = simdata)
simdata$dose <- NULL
# Adopters alone
expect_silent(a <- lm(y ~ assigned(spec, dichotomy = dose >= 200 ~ .), data = simdata))
# teeMod doesnt look in assigned for StudySpecification
# expect_silent(as.lmitt(a))
# Weight + assigned
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .))))
expect_silent(as.lmitt(lm(y ~ assigned(spec), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .))))
# assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(dichotomy = dose >= 200 ~ .), data = simdata,
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ assigned(spec, dichotomy = dose >= 200 ~ .), data = simdata,
offset = cov_adj(camod, specification = spec))))
# weights + assigned + cov_adj
expect_silent(as.lmitt(lm(y ~ assigned(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod))))
expect_silent(as.lmitt(lm(y ~ adopters(), data = simdata,
weights = ett(dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod, specification = spec))))
expect_silent(as.lmitt(lm(y ~ z.(), data = simdata,
weights = ett(spec, dichotomy = dose >= 200 ~ .),
offset = cov_adj(camod, specification = spec))))
# weight + adopter + cov_adj in formula
expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod)),
data = simdata, weights = ett(spec, dichotomy = dose >= 200 ~ .))))
# Fails when trying to obtain StudySpecification from a cov_adj inside offset in formula
#expect_silent(as.lmitt(lm(y ~ assigned() + offset(cov_adj(camod, specification = spec)),
# data = simdata, weights = ett()))
expect_silent(as.lmitt(lm(y ~ assigned() +
offset(cov_adj(camod, specification = spec)),
data = simdata, weights = ett(spec, dichotomy = dose >= 200 ~ .))))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.