Nothing
# RMarkdown child called by multi_source_compare.Rmd # data_intermediate_mod is dataset already limited to visit of interest # Use multi_source_vars_each character vector to determine source variables. cont_source <- names(source_vars_type[source_vars_type == 'continuous']) cont_source_index <- which(names(multi_source_vars_rename) %in% cont_source) cont_source_rename <- multi_source_vars_rename[cont_source_index] cat_source <- names(source_vars_type[source_vars_type == 'categorical']) cat_source_index <- which(names(multi_source_vars_rename) %in% cat_source) cat_source_rename <- multi_source_vars_rename[cat_source_index] ## Table --------- for(i in seq_len(length(cont_source_rename))) { cat('\n\n') cat(paste0('**Distribution of ', cont_source_rename[[i]],':** \n\n')) cat('\n\n') table_summ <- data_intermediate_mod %>% group_by(cohort, visit) %>% summarise(n = n(), n_missing = sum(is.na(.data[[cont_source_rename[[i]]]])), min = min(.data[[cont_source_rename[[i]]]], na.rm = TRUE), Q1 = quantile(.data[[cont_source_rename[[i]]]], probs = c(0.25), na.rm = TRUE), median = median(.data[[cont_source_rename[[i]]]], na.rm = TRUE), Q3 = quantile(.data[[cont_source_rename[[i]]]], probs = c(0.75), na.rm = TRUE), max = max(.data[[cont_source_rename[[i]]]], na.rm = TRUE), mean = mean(.data[[cont_source_rename[[i]]]], na.rm = TRUE), std = sd(.data[[cont_source_rename[[i]]]], na.rm = TRUE)) %>% ungroup() %>% mutate(n = format(n, big.mark = ','), n_missing = format(n_missing, big.mark = ','), min = round(min, digits = 1), Q1 = round(Q1, digits = 1), median = round(median, digits = 1), Q3 = round(Q3, digits = 1), max = round(max, digits = 1), mean = round(mean, digits = 1), std = round(std, digits = 1)) kable(table_summ) %>% kable_styling() %>% cat() } cat('\n\n') # Print harmonized categorical variable count_ns <- tabyl(data_intermediate_mod, value, show_missing_levels = FALSE) %>% untabyl() %>% adorn_totals(where = 'row') %>% mutate(n = format(n, big.mark = ',')) ## Adding percentages and formatting table_output <- tabyl(data_intermediate_mod, value, show_missing_levels = FALSE) %>% untabyl() %>% adorn_percentages(denominator = 'col') %>% adorn_totals(where = 'row') %>% adorn_pct_formatting(digits = 1) %>% adorn_ns(ns = count_ns, position = 'front') ## Print table table_output %>% kable() %>% kable_styling() %>% row_spec(row = nrow(table_output), bold = TRUE) %>% cat() cat('\n') cat('\n') # Plot ---------- to_plot <- ggplot(data = data_intermediate_mod, aes(x = .data[[cont_source_rename[[1]]]], y = .data[[cont_source_rename[[2]]]], color = factor(.data[['value']]), shape = factor(.data[['value']]))) + geom_point() + facet_wrap(~ factor(.data[[cat_source_rename]])) + theme_bw() print(to_plot) cat('\n') cat('\n')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.