In this article, you'll learn how to use psborrow2
to create a
simulation study with the goal of informing trial design.
Note that we'll need cmdstanr
to run the simulation study. Please install
cmdstanr
if you have not done so already following
this guide.
Let's load psborrow2
to start:
library(psborrow2) library(cmdstanr) # Warning: package 'cmdstanr' was built under R version 4.3.3
We'll start by showing how to conduct a simulation study when you bring your
own simulated data. To learn how to use psborrow2
for the data generation
as well, please refer to the data simulation article (https://genentech.github.io/psborrow2/articles/data_simulation.html).
To execute a simulation study with your own data,
we need to build an object of class Simulation
using the function
create_simulation_obj()
. Let's look at the arguments to
create_simulation_obj()
and consider them one-by-one below:
create_simulation_obj( data_matrix_list, outcome, borrowing, covariate, treatment )
data_matrix_list
data_matrix_list
is where you input the data you will be using for the
simulation study using the function sim_data_list()
.
The first argument is a list of lists of matrices. At the highest level, we'll index different data generation parameters. At the lowest level, we'll index different matrices generated with these parameters.
data_list
Figure 1 below depicts an example data_list
object. This object is a
list of lists with two data generation scenarios (e.g., true
HR of 1.0 and true HR of 0.8). Each scenario is arranged as a list of
matrices that were generated according to that data generation scenario.
We'll use the simsurv
package to generate survival data and we'll
then put it in a similar format. In this example, we'll vary
two data generation parameters: true HR and drift HR (the HR comparing
external to internal controls). Suppose we have a function,
sim_single_matrix()
which can simulate data for a single matrix.
That is:
```{.r .fold-hide} library(simsurv)
sim_single_matrix <- function(n = 500, # n simulated pts prob = c( 0.1, # proportion internal control 0.2, # proportion internal treated 0.7 ), # proportion external control hr = 0.70, # true HR for the treatment drift_hr = 1.0, # HR of external/internal ...) { # checks if (sum(prob) != 1.0) { stop("prob must sum to 1") }
# data frame with the subject IDs and treatment group df_ids <- data.frame( id = 1:n, ext = c( rep(0L, n * (prob[1] + prob[2])), rep(1L, n * prob[3]) ), trt = c( rep(0L, n * prob[1]), rep(1L, n * prob[2]), rep(0L, n * prob[3]) ) )
# simulated event times df_surv <- simsurv( lambdas = 0.1, dist = "exponential", betas = c( trt = log(hr), ext = log(drift_hr) ), x = df_ids, maxt = 50, ... )
df_surv$censor <- 1 - df_surv$status
# merge the simulated event times into data frame df <- merge(df_ids, df_surv) df <- df[, c("id", "ext", "trt", "eventtime", "status", "censor")] colnames(df) <- c("id", "ext", "trt", "time", "status", "cnsr") return(as.matrix(df)) }
```r set.seed(123) head(sim_single_matrix(n = 500, hr = 0.5, drift_hr = 1.2)) # id ext trt time status cnsr # [1,] 1 0 0 8.179722 1 0 # [2,] 2 0 0 6.884286 1 0 # [3,] 3 0 0 2.348331 1 0 # [4,] 4 0 0 17.898011 1 0 # [5,] 5 0 0 3.870353 1 0 # [6,] 6 0 0 6.795403 1 0
Using this function, let's simulate a list of lists of matrices with four scenarios:
# Seed for reproducibility set.seed(123) # Number of simulations per scenario n <- 100 # Create list of lists of data my_data_list <- list( replicate(n, sim_single_matrix(n = 250, hr = 0.6, drift_hr = 1.0), simplify = FALSE ), replicate(n, sim_single_matrix(n = 250, hr = 1.0, drift_hr = 1.0), simplify = FALSE ), replicate(n, sim_single_matrix(n = 250, hr = 0.6, drift_hr = 1.5), simplify = FALSE ), replicate(n, sim_single_matrix(n = 250, hr = 1.0, drift_hr = 1.5), simplify = FALSE ) )
There are 4 scenarios.
NROW(my_data_list) # [1] 4
Each scenario has 100 matrices.
NROW(my_data_list[[1]]) # [1] 100
The lowest level of the list of lists is a data matrix.
head(my_data_list[[1]][[1]]) # id ext trt time status cnsr # [1,] 1 0 0 8.179722 1 0 # [2,] 2 0 0 6.884286 1 0 # [3,] 3 0 0 2.348331 1 0 # [4,] 4 0 0 17.898011 1 0 # [5,] 5 0 0 3.870353 1 0 # [6,] 6 0 0 6.795403 1 0
guide
In order to summarize the results from the different parameters in
your simulation study, psborrow2
needs to know how the simulation parameters
differ. That is the purpose of the argument guide
, which is a data.frame
that distinguishes the simulation study parameters. Three columns are required
in guide
, though many more can be provided. The three required columns are:
data_list
In this example, the 4 scenarios are
summarized with the below guide
:
my_sim_data_guide <- expand.grid( true_hr = c(0.6, 1.0), drift_hr = c("No drift HR", "Moderate drift HR") ) my_sim_data_guide$id <- seq(1, NROW(my_sim_data_guide)) my_sim_data_guide # true_hr drift_hr id # 1 0.6 No drift HR 1 # 2 1.0 No drift HR 2 # 3 0.6 Moderate drift HR 3 # 4 1.0 Moderate drift HR 4
This guide implies that my_sim_data_guide[[1]]
is a list of
matrices where the treatment HR was 0.6 and the drift HR was 1.0.
effect
, drift
, and index
The last three inputs to sim_data_list()
, effect
, drift
, and index
are the column names in guide
that correspond to the true treatment effect,
true drift effect, and index of the data_list
items, respectively.
For our study, these are "true_hr"
, "drift_hr"
, and "id"
.
Putting it all together, we can create an object of class SimDataList
:
my_sim_data_list <- sim_data_list( data_list = my_data_list, guide = my_sim_data_guide, effect = "true_hr", drift = "drift_hr", index = "id" ) my_sim_data_list # SimDataList object with 4 different scenarios # true_hr drift_hr id n_datasets_per_param # 1 0.6 No drift HR 1 100 # 2 1.0 No drift HR 2 100 # 3 0.6 Moderate drift HR 3 100 # 4 1.0 Moderate drift HR 4 100
outcome
outcome
is where you pass information on the study outcomes. You can pass
either a single Outcome
class object (e.g., as produced by outcome_surv_exponential()
),
or a list of Outcome
class objects passed to sim_outcome_list()
. For our
example, let's just use a single exponential distribution.
my_sim_out <- outcome_surv_exponential( time_var = "time", cens_var = "cnsr", baseline_prior = prior_normal(0, 1000) ) my_sim_out # Outcome object with class OutcomeSurvExponential # # Outcome variables: # time_var cens_var # "time" "cnsr" # # Baseline prior: # Normal Distribution # Parameters: # Stan R Value # mu mean 0 # sigma sd 1000
borrowing
borrowing
is where we input information on the type of borrowing we want to
evaluate. This can be either a single object of class Borrowing
or
a list of objects created with sim_borrowing_list()
. For the sake of example,
let's assume we are interested in comparing four borrowing scenarios:
How do we specify that we want to evaluate multiple borrowing methods?
We'll use a special list of Borrowing
objects,
which we'll create through the function sim_borrowing_list()
.
my_borrowing_list <- sim_borrowing_list( list( "No borrowing" = borrowing_none("ext"), "Full borrowing" = borrowing_full("ext"), "BDB - conservative" = borrowing_hierarchical_commensurate("ext", prior_gamma(0.001, 0.001)), "BDB - aggressive" = borrowing_hierarchical_commensurate("ext", prior_gamma(1, 0.001)) ) ) my_borrowing_list # SimBorrowingList object with 4 different scenario(s) # borrowing_scenario # 1 No borrowing # 2 Full borrowing # 3 BDB - conservative # 4 BDB - aggressive
covariate
covariate
is for information on covariate adjustment details. This can be
a single instance of class Covariates
from add_covariates()
or a list of
Covariates
objects created by sim_covariate_list()
. This is also the only
argument that is not required in create_simulation_obj
. Let's leave
this argument empty (i.e., let's not adjust for any covariates).
treatment
treatment
is where we input the treatment details for our simulation study.
As with other inputs, this can be a single instance of a class Treatment
,
or a list of these classes, created with sim_treatment_list()
. Let's
just use a single instance:
my_sim_treat <- treatment_details("trt", prior_normal(0, 1000)) my_sim_treat # Treatment object # # Treatment flag column: trt # # Treatment effect prior: # Normal Distribution # Parameters: # Stan R Value # mu mean 0 # sigma sd 1000
create_simulation_obj()
Now that we have all of the relevant inputs for create_simulation_obj()
,
let's call the function, which will generate and compile Stan models
ready to sample on our behalf.
Important: psborrow2
will simulate the Cartesian product of all
unique list elements in data_matrix_list
, outcome
, borrowing
,
covariate
, and treatment
. We have 4 data
generation scenarios and 4 borrowing
scenarios. The other inputs just have one scenario (or 0 for covariate
,
which is equivalent to one scenario). This means we should expect
4 $\times$ 4
$=$ 16
combinations of parameters. Let's create a simulation object of class
Simulation
:
simulation_obj <- create_simulation_obj( my_sim_data_list, outcome = my_sim_out, borrowing = my_borrowing_list, treatment = my_sim_treat, quiet = TRUE ) simulation_obj
While we get a warning about the size of the simulation study, we are not worried because we are limiting our MCMC samples below in this example.
We can access the guide to see the specific scenarios that will be
simulated with show_guide()
:
show_guide(simulation_obj) # true_hr drift_hr id n_datasets_per_param outcome_scenario # 1 0.6 No drift HR 1 100 default # 2 1.0 No drift HR 2 100 default # 3 0.6 Moderate drift HR 3 100 default # 4 1.0 Moderate drift HR 4 100 default # 5 0.6 No drift HR 1 100 default # 6 1.0 No drift HR 2 100 default # 7 0.6 Moderate drift HR 3 100 default # 8 1.0 Moderate drift HR 4 100 default # 9 0.6 No drift HR 1 100 default # 10 1.0 No drift HR 2 100 default # 11 0.6 Moderate drift HR 3 100 default # 12 1.0 Moderate drift HR 4 100 default # 13 0.6 No drift HR 1 100 default # 14 1.0 No drift HR 2 100 default # 15 0.6 Moderate drift HR 3 100 default # 16 1.0 Moderate drift HR 4 100 default # borrowing_scenario covariate_scenario treatment_scenario # 1 No borrowing No adjustment default # 2 No borrowing No adjustment default # 3 No borrowing No adjustment default # 4 No borrowing No adjustment default # 5 Full borrowing No adjustment default # 6 Full borrowing No adjustment default # 7 Full borrowing No adjustment default # 8 Full borrowing No adjustment default # 9 BDB - conservative No adjustment default # 10 BDB - conservative No adjustment default # 11 BDB - conservative No adjustment default # 12 BDB - conservative No adjustment default # 13 BDB - aggressive No adjustment default # 14 BDB - aggressive No adjustment default # 15 BDB - aggressive No adjustment default # 16 BDB - aggressive No adjustment default
mcmc_sample()
Now that we've created a simulation object, we're ready to call mcmc_sample()
and generate draws for our model.
Note there is one important additional argument to mcmc_sample()
for
simulation objects: posterior_quantiles
. This numeric vector of length 2
specifies the quantiles for null coverage and true coverage. For instance,
95% credible coverage would be estimated with
posterior_quantiles = c(0.025, 0.975)
, the default argument.
simulation_res <- mcmc_sample( simulation_obj, posterior_quantiles = c(0.025, 0.975), iter_warmup = 400, iter_sampling = 1000, chains = 1L, seed = 112233 )
Note unlike an analysis on a single dataset, mcmc_sample()
does not
return a CmdStanModel
object when applied to a simulation study object.
Instead, it returns a class unique to simulation study results:
MCMCSimulationResult
.
class(simulation_res) # [1] "MCMCSimulationResult" # attr(,"package") # [1] "psborrow2"
Let's look at the performance of our simulation study by extracting the data.frame
that summarizes results, get_results()
:
simulation_res_df <- get_results(simulation_res) head(simulation_res_df) # true_hr drift_hr id n_datasets_per_param outcome_scenario # 1 0.6 No drift HR 1 100 default # 2 1.0 No drift HR 2 100 default # 3 0.6 Moderate drift HR 3 100 default # 4 1.0 Moderate drift HR 4 100 default # 5 0.6 No drift HR 1 100 default # 6 1.0 No drift HR 2 100 default # borrowing_scenario covariate_scenario treatment_scenario trt_var # 1 No borrowing No adjustment default 0.06385613 # 2 No borrowing No adjustment default 0.06300573 # 3 No borrowing No adjustment default 0.06358375 # 4 No borrowing No adjustment default 0.06146742 # 5 Full borrowing No adjustment default 0.02640545 # 6 Full borrowing No adjustment default 0.02538354 # mse_mean bias_mean null_coverage true_coverage # 1 0.05884766 0.05935161 0.55 0.97 # 2 0.13329996 0.03483396 0.99 0.99 # 3 0.04709898 0.01135305 0.46 0.96 # 4 0.12446717 0.02322880 0.96 0.96 # 5 0.02005176 0.02065375 0.11 0.98 # 6 0.04977218 0.00931398 0.96 0.96
Let's quickly visualize the results using ggplot2
. We will first
load ggplot2
and factorize our borrowing scenarios:
# Load ggplot2 library(ggplot2) # Warning: package 'ggplot2' was built under R version 4.3.2 # Factorize simulation_res_df$borrowing_scenario <- factor(simulation_res_df$borrowing_scenario, levels = c( "No borrowing", "BDB - conservative", "BDB - aggressive", "Full borrowing" ) )
```{.r .fold-hide} ggplot(simulation_res_df) + geom_bar(aes(x = factor(true_hr), fill = borrowing_scenario, y = mse_mean), stat = "identity", position = "dodge" ) + labs( fill = "Borrowing scenario", x = "True HR", y = "MSE" ) + facet_wrap(~drift_hr) + scale_fill_manual(values = c("#EF798A", "#F7A9A8", "#7D82B8", "#613F75"))
<div class="figure" style="text-align: center"> <img src="figure-simulation_study-unnamed-chunk-23-1.png" alt="plot of chunk unnamed-chunk-23" /> <p class="caption">plot of chunk unnamed-chunk-23</p> </div> ### Type I error Because we included a true HR of 1.0, we can evaluate type I error by looking at the compliment to the true parameter coverage: ```{.r .fold-hide} ggplot(simulation_res_df[simulation_res_df$true_hr == 1.0, ]) + geom_bar(aes(x = factor(drift_hr), fill = borrowing_scenario, y = 1 - true_coverage), stat = "identity", position = "dodge" ) + labs( fill = "Borrowing scenario", x = "drift HR", y = "Type I error" ) + scale_fill_manual(values = c("#EF798A", "#F7A9A8", "#7D82B8", "#613F75")) + scale_y_continuous(breaks = seq(0, 1, .1), limits = c(0, 1)) + geom_hline(aes(yintercept = 0.05), linetype = 2)
plot of chunk unnamed-chunk-24
We can include power by looking at the results for our true simulation of 0.6.
```{.r .fold-hide} ggplot(simulation_res_df[simulation_res_df$true_hr == 0.6, ]) + geom_bar(aes(x = factor(drift_hr), fill = borrowing_scenario, y = 1 - null_coverage), stat = "identity", position = "dodge" ) + labs( fill = "Borrowing scenario", x = "drift HR", y = "Power" ) + scale_fill_manual(values = c("#EF798A", "#F7A9A8", "#7D82B8", "#613F75")) + scale_y_continuous(breaks = seq(0, 1, .1), limits = c(0, 1)) + geom_hline(aes(yintercept = 0.80), linetype = 2)
<div class="figure" style="text-align: center"> <img src="figure-simulation_study-unnamed-chunk-25-1.png" alt="plot of chunk unnamed-chunk-25" /> <p class="caption">plot of chunk unnamed-chunk-25</p> </div> ### EHSS We can calculate the external historical sample size (EHSS) based on the simulation results. ```{.r .fold-hide} var_mat <- do.call(rbind, simulation_res@results$trt_var) N_internalcontrol <- 250*0.3 simulation_res_df$EHSS <- rowMeans(var_mat[rep(1:4, 4), ]/var_mat-1)*N_internalcontrol simulation_res_df2 <- simulation_res_df[simulation_res_df$borrowing_scenario!="No borrowing", ] ggplot(simulation_res_df2) + geom_bar(aes(x = factor(drift_hr), fill = borrowing_scenario, y = EHSS), stat = "identity", position = "dodge" ) + labs( fill = "Borrowing scenario", x = "Drift HR", y = "EHSS" ) + facet_grid(~true_hr)+ scale_fill_manual(values = c("#F7A9A8", "#7D82B8", "#613F75")) + scale_y_continuous(breaks = c(0,30,60,N_internalcontrol, 90,120)) + geom_hline(aes(yintercept = N_internalcontrol), linetype = 2)
plot of chunk unnamed-chunk-26
We can also compare designs for accuracy on the basis of their Euclidean distance to the ideal design by minimizing the type I and type II errors [@zabor2022optimal]. We can visualize the accuracy of any design using a scatterplot displaying type I error rate on the x-axis and power (1 -type II error rate) on the y-axis. A perfectly accurate design approaches the point (0, 1), representing no type I error and power of one.
In the real design of clinical trial, we can designate probability to scenarios of drift hazard ratio and obtain weighted Euclidean distance to the ideal design. An example shows the probability of moderate drift hazard ratio is 0.2 and the probability of no drift hazard ratio is 0.8.
*results weighted by (0.8, 0.2) for no drift and moderate drift
```{.r .fold-hide} df_accuracy <- data.frame(simulation_res_df2[simulation_res_df2$true_hr == 1.0, c("drift_hr", "borrowing_scenario")], typeI = 1 - simulation_res_df2[simulation_res_df2$true_hr == 1.0, c("true_coverage")], Power = 1 - simulation_res_df2[simulation_res_df2$true_hr == 0.6, "null_coverage"]) df_accuracy$weights <- rep(c(0.8, 0.2), 3)
df_sum <- data.frame(aggregate(df_accuracy$typeIdf_accuracy$weights, list(df_accuracy$borrowing_scenario), sum), aggregate(df_accuracy$Powerdf_accuracy$weights, list(df_accuracy$borrowing_scenario), sum)) df_sum <- df_sum[, c(1,2,4)] colnames(df_sum) <- c("borrowing_scenario", "typeI", "Power")
ggplot(df_sum) + geom_point(aes(x = typeI, color = borrowing_scenario, y = Power), size = 4) + xlim(c(0,1))+ ylim(c(0,1))+ labs( color = "Borrowing scenario", x = "Type I Error Rate", y = "Power" ) + scale_color_manual(values = c("#F7A9A8", "#7D82B8", "#613F75")) + ggtitle("Optimal Accuracy Design") ```
plot of chunk unnamed-chunk-27
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.