Nothing
#' @title pspatreg: A package to estimate and make inference for spatial
#' and spatio-temporal econometric regression models
#'
#' @docType package
#' @aliases pspatreg-package
#' @name pspatreg
#' @rdname pspatreg
#'
#' @description \pkg{pspatreg} offers the user a collection of functions to
#' estimate and make inference of geoadditive spatial or spatio-temporal
#' semiparametric regression models of type \emph{ps-sim}, \emph{ps-sar},
#' \emph{ps-sem}, \emph{ps-sarar}, \emph{ps-sdm}, \emph{ps-sdem} or
#' \emph{ps-slx}. These type of specifications are very general and they can
#' include parametric and non-parametric covariates, spatial or
#' spatio-temporal non-parametric trends and spatial lags of the dependent and
#' independent variables and/or the noise of the model. The non-parametric
#' terms (either trends or covariates) are modeled using P-Splines. The
#' non-parametric trend can be decomposed in an ANOVA way including main and
#' interactions effects of 2nd and 3rd order. The estimation method can be
#' restricted maximum likelihood (REML) or maximum likelihood (ML).
#'
#' @details
#' Some functionalities that have been included in \pkg{pspatreg}
#' package are:
#'
#' @section 1. Estimation of the semiparametric regression model:
#' \pkg{pspatreg}
#' allows the estimation of geoadditive spatial or spatio-temporal
#' semiparametric regression models which could include: \itemize{ \item An
#' spatial or spatio-temporal trend, that is, a geoadditive model either for
#' cross-section data or for panel data. This trend can be decomposed in main
#' and interaction functions in an ANOVA way. The spatial (or spatio-temporal)
#' trend gather the potential spatial heterogeneity of the data. \item
#' Parametric covariates as usual in regression models. \item Non-parametric
#' covariates in which the functional relationship is estimated from the data.
#' Both the trends and non-parametric covariates are modelled using P-splines.
#' \item Spatial dependence adding spatial lags of the dependent and
#' independent variables as usual in spatial econometric models. These models
#' gather the potential spatial spillovers. } Once specified, the whole model
#' can be estimated using either restricted maximum-likelihood (REML) or
#' maximum likelihood (ML). The spatial econometric specifications allowed in
#' \pkg{pspatreg} are the following ones: \itemize{ \item \emph{ps-sim}:
#' geoadditive semiparametric model without spatial effects (in addition to
#' the spatial or spatio-temporal trend, if it is included). \deqn{ y =
#' f(s_1,s_2,\tau_{t}) y + X \beta + + \sum_{i=1}^k g(z_i) + \epsilon } where:
#' \itemize{ \item \eqn{f(s_1,s_2,\tau_t)} is a smooth spatio-temporal trend
#' of the spatial coordinates \eqn{s1,s_2} and of the temporal coordinates
#' \eqn{\tau_t}. \item \eqn{X} is a matrix including values of parametric
#' covariates. \item \eqn{g(z_i)} are non-parametric smooth functions of the
#' covariates \eqn{z_i}. \item \eqn{\epsilon ~ N(0,R)} where \eqn{ R =
#' \sigma^2 I_T} if errors are uncorrelated or it follows an AR(1) temporal
#' autoregressive structure for serially correlated errors. } \item
#' \emph{ps-slx}: geoadditive semiparametric model with spatial lags of the
#' regresors (either parametric or non-parametric): \deqn{ y =
#' f(s_1,s_2,\tau_{t}) + X \beta + (W_{N} \otimes I_T) X \theta + \sum_{i
#' =1}^k g(z_i) + \sum_{i = 1}^k g((\gamma_i*W_{N} \otimes I_T) z_i) +
#' \epsilon } where: \itemize{ \item \eqn{W_N} is the spatial weights matrix.
#' \item \eqn{I_T} is an identity matrix of order \eqn{T} (\emph{T = 1} for
#' pure spatial data). } \item \emph{ps-sar}: geoadditive semiparametric model
#' with spatial lag of the dependent variable \deqn{ y = (\rho*W_{N} \otimes
#' I_T) y + f(s_1,s_2,\tau_{t}) + X \beta + \sum_{i =1}^k g(z_i) + \epsilon }
#' \item \emph{ps-sem}: geoadditive semiparametric model with a spatial lag of
#' the noise of the model \deqn{ y = f(s_1,s_2,\tau_{t}) + X \beta + \sum_{i
#' =1}^k g(z_i) + u } \deqn{ u = (\delta*W_{N} \otimes I_T) u + \epsilon }
#' \item \emph{ps-sdm}: geoadditive semiparametric model with spatial lags of
#' the endogenous variable and of the regressors (spatial durbin model) \deqn{
#' y = (\rho*W_{N} \otimes I_T) y + f(s_1,s_2,\tau_{t}) + X \beta + (W_{N}
#' \otimes I_T) X \theta + \sum_{i = 1}^k g(z_i) + \sum_{i = 1}^k
#' g((\gamma_i*W_{N} \otimes I_T) z_i) + \epsilon } \item \emph{ps-sdem}:
#' geoadditive semiparametric model with spatial errors and spatial lags of
#' the endogenous variable and of the regressors \deqn{ y =
#' f(s_1,s_2,\tau_{t}) + X \beta + (W_{N} \otimes I_T) X \theta + \sum_{i =
#' 1}^k g(z_i) + \sum_{i = 1}^k g((\gamma_i*W_{N} \otimes I_T) z_i) + u }
#' \deqn{ u = (\delta*W_{N} \otimes I_T) u + \epsilon } \item \emph{ps-sarar}:
#' geoadditive semiparametric model with a spatial lag for: both dependent
#' variable and errors \deqn{ y = (\rho*W_{N} \otimes I_T) y +
#' f(s_1,s_2,\tau_{t}) + X \beta + (W_{N} \otimes I_T) X \theta + \sum_{i =
#' 1}^k g(z_i) + \sum_{i = 1}^k g((\gamma_i*W_{N} \otimes I_T) z_i) + u }
#' \deqn{ u = (\delta*W_{N} \otimes I_T) u + \epsilon } }
#'
#' @section 2. Plot of the spatial and spatio-temporal trends:
#' Once estimated
#' the geoadditive semiparametric model, some functions of \pkg{pspatreg} are
#' suited to make plots of the spatial or spatio-temporal trends. These
#' functions, named \code{\link{plot_sp2d}} and \code{\link{plot_sp3d}}, can deal
#' either with `sf` objects or `dataframe` objects including spatial coordinates
#' (see the examples of the functions).
#' The function \code{\link{plot_sptime}} allows
#' to examine temporal trends for each spatial unit. Eventually, it is also
#' possible to get the plots on nonparametric covariates using
#' \code{\link{plot_terms}}.
#'
#' @section 3. Impacts and spatial spillovers:
#' It is very common in spatial econometrics to
#' evaluate the multiplier impacts that a change in the value of a regressor,
#' in a point in the space, has on the explained variable. The \pkg{pspatreg}
#' package allows the computation and inference of spatial impacts (direct,
#' indirect and total) either for parametric covariates or nonparametric
#' covariates (in the last case, the output are impact functions). The function
#' named \code{\link{impactspar}} compute the impacts for parametric
#' covariates in the usual way using simulation. On the other hand, the
#' function \code{\link{impactsnopar}} allows the computation of impact
#' functions for nonparametric covariates. For parametric covariates,
#' the method to compute the impacts is the same than the
#' exposed in LeSage and Page (2009). For nonparametric covariates the
#' method is described in the help of the function \code{\link{impactsnopar}}.
#' Both impact functions have dedicated methods to
#' get a summary, for the parametric covariates, and
#' plots, for the nonparametric covariates, of the
#' direct, indirect and total impacts.
#'
#' @section 4. Additional methods: The package \pkg{pspatreg} provides the usual
#' methods to extract information of the fitted models. The methods included
#' are:
#' \itemize{
#' \item \code{\link{anova}}: provides tables of fitted
#' `pspatreg` models including information criteria (AIC and BIC),
#' log-likelihood and degrees of freedom of each fitted model.
#' Also allows to perform LR tests between nested models.
#' \item \code{\link{print}} method is used to print short tables
#' including the values of beta and spatial coefficients
#' as well as p-values of significance test for each
#' coefficient.
#' \item \code{\link{summary}} method displays the results of
#' the estimation for spatial and spatio-temporal trends,
#' parametric and nonparametric covariates and spatial parameters.
#' \item \code{\link{coef}} extractor function of the parametric and
#' spatial coefficientes.
#' \item \code{\link{fitted}} extractor function of the fitted values.
#' \item \code{\link{logLik}} extractor function of the log-likelihood.
#' \item \code{\link{residuals}} extractor function of the residuals.
#' \item \code{\link{vcov}} extractor function of the covariance matrix
#' of the estimated parameters. The argument \code{bayesian}
#' (default = `TRUE`) allows to choose between sandwich
#' (frequentist) or bayesian method to compute the variances and
#' covariances. See Fahrmeir et al. (2021) for details.
#' }
#'
#' @section Datasets:
#' \pkg{pspatreg} includes a spatio-temporal panel database
#' including observations of unemployment, economic variables
#' and spatial coordinates (centroids) for 103 Italian provinces
#' in the period 1996-2019.
#' This database is provided in RData format and can be loaded
#' using the command \code{data(unemp_it, package = "pspatreg")}.
#' The database also includes a \emph{W} spatial neighborhood matrix
#' of the Italian provinces (computed using queen criterium).
#' Furthermore, a map of Italian provinces is also included as an sf object.
#' This map can be used to plot spatial and spatio-temporal trends estimated
#' for each province. Some examples of spatial and spatio-temporal
#' fitted trends are included in the help of the main function of
#' \pkg{pspatreg} package (see especially \code{?pspatfit}).
#' See Minguez, Basile and Durban (2020) for additional details about
#' this database.
#' \cr
#' source: Italian National Institute of Statistics (ISTAT)
#' \emph{https://www.istat.it}
#' \cr \cr
#'
#' For the spatial pure case, the examples included use the
#' household database \code{ames} included in \pkg{AmesHousing} package.
#' See the help of \code{?AmesHousing::make_ames} for an explanation of the
#' variables included in this database.
#' Examples of hedonic models including geoadditive spatial econometric
#' regressions are included in the examples of \pkg{pspatreg} package.
#'
#' @references
#' \itemize{
#' \item Basile, R.; Durban, M.; Minguez, R.; Montero, J. M.; and
#' Mur, J. (2014). Modeling regional economic dynamics: Spatial
#' dependence, spatial heterogeneity and nonlinearities.
#' \emph{Journal of Economic Dynamics and Control}, (48), 229-245.
#' <doi:10.1016/j.jedc.2014.06.011>
#'
#' \item Eilers, P. and Marx, B. (1996). Flexible Smoothing with
#' B-Splines and Penalties. \emph{Statistical Science}, (11), 89-121.
#'
#' \item Eilers, P. and Marx, B. (2021). \emph{Practical Smoothing.
#' The Joys of P-Splines}. Cambridge University Press.
#'
#' \item Fahrmeir, L.; Kneib, T.; Lang, S.; and Marx, B. (2021).
#' \emph{Regression. Models, Methods and Applications (2nd Ed.)}.
#' Springer.
#'
#' \item Lee, D. and Durban, M. (2011). P-Spline ANOVA Type Interaction
#' Models for Spatio-Temporal Smoothing. \emph{Statistical Modelling},
#' (11), 49-69. <doi:10.1177/1471082X1001100104>
#'
#' \item Lee, D. J., Durban, M., and Eilers, P. (2013). Efficient
#' two-dimensional smoothing with P-spline ANOVA mixed models
#' and nested bases. \emph{Computational Statistics & Data Analysis},
#' (61), 22-37. <doi:10.1016/j.csda.2012.11.013>
#'
#' \item LeSage, J. and Pace, K. (2009). \emph{Introduction to
#' Spatial Econometrics}. CRC Press, Boca Raton.
#'
#' \item Minguez, R.; Basile, R. and Durban, M. (2020). An Alternative
#' Semiparametric Model for Spatial Panel Data. \emph{Statistical Methods and Applications},
#' (29), 669-708. <doi: 10.1007/s10260-019-00492-8>
#'
#' \item Montero, J., Minguez, R., and Durban, M. (2012). SAR models
#' with nonparametric spatial trends: A P-Spline approach.
#' \emph{Estadistica Espanola}, (54:177), 89-111.
#'
#' \item Rodriguez-Alvarez, M. X.; Kneib, T.; Durban, M.; Lee, D.J.
#' and Eilers, P. (2015). Fast smoothing parameter separation
#' in multidimensional generalized P-splines: the SAP algorithm.
#' \emph{Statistics and Computing} 25 (5), 941-957.
#' <doi:10.1007/s11222-014-9464-2>
#'
#' \item Wood, S.N. (2017). \emph{Generalized Additive Models.
#' An Introduction with \code{R}} (second edition). CRC Press, Boca Raton.
#' }
#'
#' @author
#' \tabular{ll}{
#' Roman Minguez \tab \email{roman.minguez@@uclm.es} \cr
#' Roberto Basile \tab \email{roberto.basile@@univaq.it} \cr Maria Durban \tab
#' \email{mdurban@@est-econ.uc3m.es} \cr Gonzalo Espana-Heredia \tab
#' \email{gehllanza@@gmail.com} \cr
#' }
#'
#' @importFrom AmesHousing make_ames
#' @importFrom dplyr left_join
#' @importFrom fields image.plot
#' @importFrom ggplot2 ggplot geom_line ggtitle labs aes xlim ylim
#' @importFrom ggplot2 geom_histogram
#' @importFrom graphics image contour matplot title points
#' @importFrom graphics par abline lines
#' @importFrom grDevices heat.colors hcl.colors
#' @importFrom MBA mba.surf
#' @importFrom MASS ginv mvrnorm
#' @importFrom Matrix bandSparse bdiag crossprod determinant
#' @importFrom Matrix diag Diagonal kronecker Matrix
#' @importFrom Matrix rowSums solve t tcrossprod
#' @importFrom methods as
#' @importFrom minqa bobyqa
#' @importFrom numDeriv hessian
#' @importFrom plm plm pdata.frame Between Within index
#' @importFrom Rdpack reprompt
#' @importFrom sf st_as_sf st_drop_geometry st_coordinates
#' @importFrom sf st_geometry_type
#' @importFrom spatialreg get.ZeroPolicyOption create_WX
#' @importFrom spatialreg can.be.simmed jacobianSetup do_ldet
#' @importFrom spatialreg intImpacts lmSLX invIrW trW
#' @importFrom spdep listw2mat mat2listw nb2listw
#' @importFrom spdep knearneigh knn2nb
#' @importFrom splines spline.des
#' @importFrom stats var sd loess predict vcov
#' @importFrom stats model.response as.formula .getXlevels
#' @importFrom stats pchisq pnorm pt rnorm qnorm
#' @importFrom stats coefficients fitted residuals printCoefmat
#' @importFrom stats model.frame model.matrix terms lag
#' @importFrom stats anova coef formula logLik AIC BIC
#' @importFrom stats na.action napredict update
#' @importFrom stringr str_detect str_replace str_split str_extract str_length
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.