Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(rio)
library(statmod)
## load data from psre package
data(gss)
## decrease the variance of sei01, make sex a factor,
## and recode values of education less than 6 to 6.
## select only the required variables, then listwise
## delete.
gss <- gss %>%
mutate(sei01 = sei10/100,
sex = factorize(sex),
educ = case_when(
educ < 6 ~ 6,
TRUE ~ educ)) %>%
dplyr::select(childs, age, sei01, sex, educ) %>%
na.omit()
## estimate a poisson glm
moda <- glm(childs ~ sei01 + sex + educ + age,
data=gss, family=poisson)
## Make data frame that has original data,
## systematic component related to the
## independent variables and the model
## standardized deviance residuals.
edat <- data.frame(
age = gss$age,
educ = gss$educ,
sei01 = gss$sei01,
com_age = predict(moda, type="terms")[, "age"],
com_educ = predict(moda, type="terms")[, "educ"],
com_sei = predict(moda, type="terms")[, "sei01"],
res = rstandard(moda, type="deviance"))
## A. Age
ggplot(edat, aes(x=age, y=(com_age + res))) +
geom_point(shape=1, col="gray50") +
geom_smooth(aes(linetype = "Linear"), method="lm", se=FALSE, col="black") +
geom_smooth(aes(linetype = "GAM"), method="gam", formula =y ~ s(x, k=5),
se=FALSE, col="black") +
theme_classic() +
theme(legend.position = "top") +
labs(x="Age", y="Component + Quantile Residual", linetype = "")
# ggssave("output/f10_10a.png", height=4.5, width=4.5, units="in", dpi=300)
## B. Education
ggplot(edat, aes(x=educ, y=(com_educ + res))) +
geom_point(shape=1, col="gray50", position=position_jitter(width=.15)) +
geom_smooth(aes(linetype = "Linear"), method="lm", se=FALSE, col="black") +
geom_smooth(aes(linetype = "GAM"), method="gam", formula =y ~ s(x, k=5),
se=FALSE, col="black") +
theme_classic() +
theme(legend.position = "top") +
labs(x="Education", y="Component + Quantile Residual", linetype = "")
# ggssave("output/f10_10b.png", height=4.5, width=4.5, units="in", dpi=300)
## C. Socioeconomic status
ggplot(edat, aes(x=sei01, y=(com_sei + res))) +
geom_point(shape=1, col="gray50", position=position_jitter(width=.15)) +
geom_smooth(aes(linetype = "Linear"), method="lm", se=FALSE, col="black") +
geom_smooth(aes(linetype = "GAM"), method="gam", formula =y ~ s(x, k=5),
se=FALSE, col="black") +
theme_classic() +
theme(legend.position = "top") +
labs(x="Socio-economic Status", y="Component + Quantile Residual", linetype = "")
# ggssave("output/f10_10c.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.