Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(DAMisc)
library(rio)
## load data from psre package
data(gss)
## decrease the variance of sei01, make sex a factor,
## and recode values of education less than 6 to 6.
## select only the required variables, then listwise
## delete.
gss <- gss %>%
mutate(sei01 = sei10/100,
sex = factorize(sex),
educ = case_when(
educ < 6 ~ 6,
TRUE ~ educ)) %>%
dplyr::select(childs, age, sei01, sex, educ) %>%
na.omit()
## estimate a poisson glm
moda <- glm(childs ~ sei01 + sex + educ + age,
data=gss, family=poisson)
## use glmChange2 from the DAMisc package
## to get the average marginal effect
g2 <- glmChange2(moda, gss, varname = "age", diffchange="unit", n=5, sim=TRUE)
## make plot
ggplot() +
geom_histogram(aes(x=g2$avesamp), col="white") +
geom_vline(xintercept=mean(g2$avesamp), linetype=2, size=1.25) +
theme_classic() +
labs(x="First Differences for Age\n(+/- 2.5 Years)", y="Frequency")
# ggssave("output/f10_2.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.