Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
# library(reticulate)
## load data from psre package
data(wvs)
## filter out missing values on pct_mid_income
d2 <- wvs %>%
filter(!is.na(pct_mid_income))
## The normBand function creates data that will allow you to plot the
## normal confidence bands for the estimate and/or the
## normal reference distribution.
## A. Silverman (1986)
nbd <- normBand(d2$pct_mid_income, kernel="gaussian", bw="nrd0")
## create the plot using the nbd data frame
ggplot(nbd, aes(x=eval.points)) +
geom_ribbon(aes(ymin = lwr, ymax=upr), alpha=.25, fill="gray50") +
geom_ribbon(aes(ymin = lwd_od, ymax = upr_od), col="transparent", alpha=.5) +
geom_line(aes(y=obsden), col="black") +
theme_classic() +
labs(x="Proportion in Middle Income Category",
y="Density")
# ggssave("output/f3_4a.png", height=4.5, width=4.5, units="in", dpi=300)
## B. Scott (1992)
nbd <- normBand(d2$pct_mid_income, kernel="gaussian", bw="nrd")
ggplot(nbd, aes(x=eval.points)) +
geom_ribbon(aes(ymin = lwr, ymax=upr), alpha=.25, fill="gray50") +
geom_ribbon(aes(ymin = lwd_od, ymax = upr_od), col="transparent", alpha=.5) +
geom_line(aes(y=obsden), col="black") +
theme_classic() +
labs(x="Proportion in Middle Income Category",
y="Density")
# ggssave("output/f3_4b.png", height=4.5, width=4.5, units="in", dpi=300)
## C. Sheather and Jones (1991)
nbd <- normBand(d2$pct_mid_income, kernel="gaussian", bw="SJ")
ggplot(nbd, aes(x=eval.points)) +
geom_ribbon(aes(ymin = lwr, ymax=upr), alpha=.25, fill="gray50") +
geom_ribbon(aes(ymin = lwd_od, ymax = upr_od), col="transparent", alpha=.5) +
geom_line(aes(y=obsden), col="black") +
theme_classic() +
labs(x="Proportion in Middle Income Category",
y="Density")
# ggssave("output/f3_4c.png", height=4.5, width=4.5, units="in", dpi=300)
## D. Too Bumpy
nbd <- normBand(d2$pct_mid_income, kernel="gaussian", bw=0.02)
ggplot(nbd, aes(x=eval.points)) +
geom_ribbon(aes(ymin = lwr, ymax=upr), alpha=.25, fill="gray50") +
geom_ribbon(aes(ymin = lwd_od, ymax = upr_od), col="transparent", alpha=.5) +
geom_line(aes(y=obsden), col="black") +
theme_classic() +
labs(x="Proportion in Middle Income Category",
y="Density")
# ggssave("output/f3_4d.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.