View source: R/classes.R View source: R/ptglm.R
| ptglm | R Documentation | 
Estimates a Poisson-Tweedie generalized linear model.
ptglm(formula, offset = NULL, data, maxit = c(500, 1e+05), trace = T, theta.start = NULL)
| formula | A formula for the fixed effects part of the model. It should be in the form  | 
| offset | An offset to be added to the linear predictor. Default is  | 
| data | A data frame containing the variables declared in  | 
| maxit | Vector containing the maximum number of iterations used in optim by the BFGS method and, if this fails, by the Nelder-Mead method | 
| trace | Logical value. If  | 
| theta.start | Numeric vector comprising initial parameter values for the vector of regression coefficients, the dispersion parameter and the power parameter (to be specified exactlyin this order!). | 
A list containing the following elements: function's call (call); 
maximum likelihood estimate (mle);  value of the
loglikelihood at the mle (logl); convergence value (if 0, the optimization converged);
the observed Fisher information (fisher.info) and the starting values
used in the optimization (theta.init)
Mirko Signorelli
Signorelli, M., Spitali, P., Tsonaka, R. (2021). Poisson-Tweedie mixed-effects model: a flexible approach for the analysis of longitudinal RNA-seq data. Statistical Modelling, 21 (6), 520-545. URL: https://doi.org/10.1177/1471082X20936017
ptmixed for the Poisson-Tweedie GLMM
data(df1, package = 'ptmixed') # estimate the model fit1 = ptglm(formula = y ~ group*time, data = df1) # view model summary: summary(fit1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.