Nothing
#' p-variation calculation and application
#'
#' This package deals with p-variation for the sample (i.e. the sequence of data values).
#' It gives opportunity to calculate the p-variation for the sample -- this is the main purpose of this package.
#' Nonetheless, it could be used to calculate p-variation for arbitrary
#' piecewise monotonic function as well.
#' Moreover, the package includes one example of practical application of the p-variation.
#'
#' \tabular{ll}{
#' Package: \tab pvar\cr
#' Type: \tab Package\cr
#' Version: \tab 2.2.5\cr
#' Date: \tab 2016-05-17\cr
#' License: \tab GPL-2\cr
#' Institution: \tab Vilnius University Faculty of Mathematics and Informatics \cr
#' }
#'
#' This package is about p-variation. It deals with p-variation of a finite sample data values.
#' To be precise, lets star with the definitions. Originally p-variation is defined for a functions.
#'
#' For a function \eqn{f:[0,1] \rightarrow R}{f:[0,1] -> R} and \eqn{0 < p < \infty}{0 < p < \infty}
#' p-variation is defined as
#'
#' \deqn{
#' v_p(f) = \sup \left\{ \sum_{i=1}^m |f(t_i) - f(t_{i-1})|^p : 0=t_0<t_1<\dots<t_m=1, m \geq 1 \right\}
#' }{
#' v_p(f) = sup { \sum |f(t_i) - f(t_{i-1})|^p : 0=t_0<t_1<\dots<t_m=1, m>=1}
#' }
#'
#' Analogically, for a sequences of values \eqn{X_0, X_1,..., X_n}, the p-variation is defined as
#' \deqn{
#' v_p(\{X_i\}_{i=0}^n) = \max\left\{ \sum_{i=1}^k |X_{j_i}-X_{j_{i-1}}|^p: 0=j_0<j_1<\dots<j_k=n, \; k=1,2,...,n \right\}
#' }{
#' v_p(\{X_i\}_{i=0}^n) = max { \sum |X_{j_i}-X_{j_{i-1}}|^p :0=j_0<j_1<\dots<j_k=n, \; k=1,2,\dots,n }
#' }
#'
#' The points \eqn{0=t_0<t_1<\dots<t_m=1} (or \eqn{0=j_0<j_1<\dots<j_k=n}) that achieves the maximums is called a supreme partition (or just a partition for short).
#'
#' There are two main functions that this package is all about, namely it is \code{\link{pvar}} and \code{\link{PvarBreakTest}}.
#' The main function in this package is \code{\link{pvar}}.
#' It calculates the p-variation and the partition.
#' And the function \code{\link{PvarBreakTest}} is one of the examples of p-variation applications.
#' It performs structural break test of vector \code{x} that exams whether there are multiple
#' shifts in mean inside vector \code{x}.
#'
#' All other functions are loaded only for supporting and illustrating purposes.
#' @author Author and Maintainer: Vygantas Butkus <Vygantas.Butkus@@gmail.com>.
#'
#' Special thanks to Rimas Norvaisa the supervisor of my studies.
#'
#' @references
#'
#' [1] V. Butkus, R. Norvaisa. Lith Math J (2018). https://doi.org/10.1007/s10986-018-9414-3
#'
#' [2] R. M. Dudley, R. Norvaisa. An Introduction to
#' p-variation and Young Integrals, Cambridge, Mass., 1998.
#'
#' [3] R. M. Dudley, R. Norvaisa. Differentiability of
#' Six Operators on Nonsmooth Functions and p-Variation, Springer Berlin Heidelberg,
#' Print ISBN 978-3-540-65975-4, Lecture Notes in Mathematics Vol. 1703, 1999.
#'
#' [4] R. Norvaisa, A. Rackauskas. Convergence in law of partial sum processes in p-variation norm.
#' Lth. Math. J., 2008., Vol. 48, No. 2, 212-227.
#'
#' [5] J. Qian. The p-variation of Partial Sum Processes and the Empirical Process.
#' The Annals of Probability, 1998, Vol. 26, No. 3, 1370-1383.
#'
#' @seealso
#' The main function is \code{\link{pvar}} - it finds p-variation and the partition that maximizes \code{\link{Sum_p}} function.
#'
#' Other important functions is \code{\link{PvarBreakTest}} it performs structural break test of vector \code{x}
#' by calculating p-variations of \code{BridgeT(x)} (see \code{\link{BridgeT}}).
#'
#' @encoding utf8
#' @import Rcpp
#' @importFrom graphics plot points par
#' @importFrom stats filter rnorm time ts sd var
#' @docType package
#' @name pvar-package
#' @useDynLib pvar
#' @aliases pvar-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.