Description Usage Arguments Value Examples

Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

1 2 3 4 |

`ry1` |
Correlation between DV (y) and first predictor (1) |

`ry2` |
Correlation between DV (y) and second predictor (2) |

`ry3` |
Correlation between DV (y) and third predictor (3) |

`ry4` |
Correlation between DV (y) and fourth predictor (4) |

`ry5` |
Correlation between DV (y) and fifth predictor (5) |

`r12` |
Correlation between first (1) and second predictor (2) |

`r13` |
Correlation between first (1) and third predictor (3) |

`r14` |
Correlation between first (1) and fourth predictor (4) |

`r15` |
Correlation between first (1) and fifth predictor (5) |

`r23` |
Correlation between second (2) and third predictor (3) |

`r24` |
Correlation between second (2) and fourth predictor (4) |

`r25` |
Correlation between second (2) and fifth predictor (5) |

`r34` |
Correlation between third (3) and fourth predictor (4) |

`r35` |
Correlation between third (3) and fifth predictor (5) |

`r45` |
Correlation between fourth (4) and fifth predictor (5) |

`n` |
Sample size |

`alpha` |
Type I error (default is .05) |

`rep` |
number of replications (default is 10000) |

Power for Multiple Regression (ALL)

1 |

pwr2ppl documentation built on June 12, 2019, 5:03 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.