| estimateIR | R Documentation | 
Parameter estimation (intensity, relaxation rate, proportion of fluid) in Inversion Recovery MRI data.
estimateIR(IRdataobj, TEScale = 100, dataScale = 1000, method = c("NLR", "QL"),
           varest = c("RSS","data"), fixed = TRUE, smoothMethod=c("PAWS","Depth"),
           kstar = 24, alpha = .025, bysegment = TRUE, verbose = TRUE)
IRdataobj | 
 4D array of IRMRI signals. First dimension corresponds to Inversion times (InvTime).  | 
TEScale | 
 Internal scale factor for Echo Times. This influences parameter scales in numerical calculations.  | 
dataScale | 
 Internal scale factor for MR signals. This influences parameter scales in numerical calculations.  | 
method | 
 Either   | 
varest | 
 Method to, in case of   | 
fixed | 
 Should adaptive smoothing performed for Sx and Rx maps and fx maps reestimated afterwards ?  | 
smoothMethod | 
 Either "PAWS" or "Depth". the second option is not yet implemented.  | 
kstar | 
 number of steps used in PAWS  | 
alpha | 
 significance level for decisions in aws algorithm (suggestion: between 1e-5 and 0.025)  | 
bysegment | 
 
  | 
verbose | 
 Logical. Provide some runtime diagnostics.  | 
This function implements the complete pipeline of IRMRI anlysis.
List of class "IRmixed" with components
IRdata | 
 4D array containing the IRMRI data, first dimension refers to inversion times  | 
InvTimes | 
 vector of inversion times  | 
segm | 
 segmentation codes, 1 for CSF, 2 for GM, 3 for WM, 0 for out of brain  | 
sigma | 
 noise standard deviation, if not specified estimated fron CSF areas in image with largest inversion time  | 
L | 
 effective number of coils  | 
fx | 
 Array of fluid proportions  | 
Sx | 
 Array of maximal signals  | 
Rx | 
 Array of relaxation rates  | 
Sf | 
 Global estimate of maximal fluid signal  | 
Rf | 
 Global estimate of fluid relaxation rate  | 
ICovx | 
 Covariance matrix of estimates   | 
sigma | 
 Array of provided or estimated noise standard deviations  | 
Convx | 
 Array of convergence indicators  | 
rsdx | 
 Residual standard deviations  | 
The arrays contain entries for all voxel with segments%in%1:3.
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8_7>.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data. <doi:10.20347/WIAS.DATA.6>.
estimateIRfluid, estimateIRsolid, estimateIRsolidfixed,smoothIRSolid
## runs about 30 seconds
dataDir0 <- system.file("extdataIR", package = "qMRI")
dataDir <- tempdir()
library(oro.nifti)
library(qMRI)
segm <- readNIfTI(file.path(dataDir0,"Brainweb_segm"))
Sf <- 900
Rf <- 0.000285
Sgm <- 400
Rgm <- 0.00075
fgm <- .15
Swm <- 370
Rwm <- 0.0011
fwm <- .05
InvTimes0 <- c(100, 200, 400, 600, 800, 1200, 1600, 2000, 2500, 3000, 
              3500, 4000, 4500, 5000, 6000, 15000)
nTimes <- length(InvTimes0)
sigma <- 40
## generate IR signal
IRdata <- generateIRData(segm, c(Sf,Rf), c(fgm,Rgm,Sgm), c(fwm,Rwm,Swm), InvTimes0, sigma)
for(i in 1:9) writeNIfTI(as.nifti(IRdata[i,,,]), 
                         file.path(dataDir,paste0("IR0",i)))
for(i in 10:nTimes) writeNIfTI(as.nifti(IRdata[i,,,]), 
                         file.path(dataDir,paste0("IR",i)))
## generate IRdata object
t1Files <- list.files(dataDir,"*.nii.gz",full.names=TRUE)
segmFile <- file.path(dataDir0,"Brainweb_segm")
IRdata <- readIRData(t1Files, InvTimes0, segmFile, sigma=sigma,
                     L=1, segmCodes=c("CSF","GM","WM"))
## estimate all
sIRmix <- estimateIR(IRdata, method="QL")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.