qscore | R Documentation |
Computes both the hard and the smooth quadratic score of a clustering. Handles both
qscore(data, params, type = "both")
data |
a numeric vector, matrix, or data frame of observations.
Rows correspond to observations and columns correspond to variables/features.
Let |
params |
a list containing cluster parameters (size, mean, cov). Let
|
type |
the type of score, a character in the set
|
The function calculates quadratic scores as defined in equation (22) in Coraggio and Coretto (2023).
A numeric vector with both the hard and the smooth score, or only one of them
depending on the argument type
.
Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate Analysis, Vol. 196(105181), 1-20. DOI: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jmva.2023.105181")}
clust2params
# --- load and split data
data("banknote")
set.seed(345)
idx <- sample(1:nrow(banknote), size = 25, replace = FALSE)
dat_f <- banknote[-idx, -1] ## training data set
dat_v <- banknote[ idx, -1] ## validation data set
# --- Gaussian model-based clustering, K=3
# fit clusters
fit1 <- gmix(dat_f, K=3)
## compute quadratic scores using fitted mixture parameters
s1 <- qscore(dat_v , params = fit1$params)
s1
# --- k-means clustering, K=3
# obtain the k-means partition
cl_km <- kmeans(dat_f, centers = 3, nstart = 1)$cluster
## convert k-means hard assignment into cluster parameters
par_km <- clust2params(dat_f, cl_km)
# compute quadratic scores
s2 <- qscore(dat_v, params = par_km)
s2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.