View source: R/lexical_classification.R
lexical_classification | R Documentation |
Transcript apply lexical classification score (content to functional word proportion) by grouping variable(s) and optionally plot the breakdown of the model.
lexical_classification(
text.var,
grouping.var = NULL,
order.by.lexical_classification = TRUE,
function.words = qdapDictionaries::function.words,
bracket = "all",
...
)
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
order.by.lexical_classification |
logical. If |
function.words |
A vector of function words. Default is
|
bracket |
The bracket type to remove. Use |
... |
Other arguments passed to |
Content words (i.e., nouns, verbs, adjectives, and adverbs) tend to be the words speakers stresses in language use. Whereas, functional words are the "glue" that holds the content together. Speakers devote much less time and stress to these words (i.e., pronouns, articles, conjunctions, quantifiers, and prepositions).
A list containing at the following components:
content |
A |
functional |
A |
raw |
Sentence level descriptive statistics on content vs. functional word use (ave.content.rate is also nown as lexical density |
lexical_classification |
Summarized (grouping variable level) descriptive statistics for content vs. functional word use |
Chung, C. & Pennebaker, J. (2007). The Psychological Functions of Function Words. In K. Fiedler (Ed.) Social Communication (pp. 343-359). New York: Psychology Press.
Pulvermuller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22, pp. 253-279. doi:10.1017/S0140525X9900182X
Segalowitz, S. J. & Lane, K. (2004). Perceptual fluency and lexical access for function versus content words. Behavioral and Brain Sciences, 27, 307-308. doi:10.1017/S0140525X04310071
Bell, A., Brenier, J. M., Gregory, M., Girand, C. & Jurafsky, D. (2009). Predictability Effects on Durations of Content and Function Words in Conversational English. Journal of Memory and Language, 60(1), 92-111. doi:10.1016/j.jml.2008.06.003
## Not run:
lexical_classification("I did not like the dog.")
lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person)
(out <- with(pres_debates2012, lexical_classification(dialogue, list(person, time))))
plot(out)
scores(out)
out2 <- preprocessed(out)
htruncdf(out2)
plot(out2)
plot(out[["content"]])
dev.new()
plot(out[["functional"]])
## cloud of functional vs. content
## Highlight Content Words
set.seed(10)
par(mar = c(0,0,0,0))
list(
content = out[["content"]],
functional = out[["functional"]]
) %>%
list_df2df("type") %>%
dplyr::mutate(colors = ifelse(type == "functional", "gray80", "blue")) %>%
with(., wordcloud::wordcloud(
word,
freq,
min.freq = 8,
random.order=FALSE,
ordered.colors = TRUE,
colors = colors
))
mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25)
legend(
.05, .12, bty = "n",
legend = c("functional", "content"),
fill = c("gray80", "blue"),
cex = .7
)
## Highlight Functional Words
set.seed(10)
par(mar = c(0,0,0,0))
list(
content = out[["content"]],
functional = out[["functional"]]
) %>%
list_df2df("type") %>%
dplyr::mutate(colors = ifelse(type == "functional", "red", "gray80")) %>%
with(., wordcloud::wordcloud(
word,
freq,
min.freq = 8,
random.order=FALSE,
ordered.colors = TRUE,
colors = colors
))
mtext("2012 Presidential Debates:\nFunctional vs. Content Word Use", padj=1.25)
legend(
.05, .12, bty = "n",
legend = c("functional", "content"),
fill = c("red", "gray80"),
cex = .7
)
#=============#
## ANIMATION ##
#=============#
## EXAMPLE 1
lex_ani <- lexical_classification(DATA.SPLIT$state, DATA.SPLIT$person)
lexa <- Animate(lex_ani, content="white", functional="blue",
current.color = "yellow", current.speaker.color="grey70")
bgb <- vertex_apply(lexa, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", net.legend.color ="white", pause=1)
## EXAMPLE 2
lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)
lexa2 <- Animate(lex_ani2, content="white", functional="blue",
current.color = "yellow", current.speaker.color="grey70")
bgb2 <- vertex_apply(lexa2, label.color="grey80", size=17, color="grey40")
bgb2 <- edge_apply(bgb2, label.color="yellow")
print(bgb2, bg="black", pause=.75, net.legend.color = "white")
## EXAMPLE 3 (bar plot)
Animate(lex_ani2, type="bar")
## EXAMPLE 4 (text plot)
Animate(lex_ani2, type="text")
#======================#
## Complex Animations ##
#======================#
## EXAMPLE 1: Network + Text + Bar
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(igraph)
library(plotrix)
lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)
## Set up the network version
lex_net <- Animate(lex_ani2, contextual="white", lexal="blue",
current.color = "yellow", current.speaker.color="grey70")
bgb <- vertex_apply(lex_net, label.color="grey80", size=17, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
lex_bar <- Animate(lex_ani2, type="bar")
## Set up the text
lex_text <- Animate(lex_ani2, type="text", size = 3, width=125, color="white")
## Generate a folder
loc <- folder(animation_lexical_classification)
setwd(loc)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
lex_text_bar <- Map(function(x, y){
uns <- unit(c(-1.6,.5,-.2,.25), "cm")
x <- x +
theme(plot.margin = uns,
text=element_text(color="white"),
legend.text=element_text(color="white"),
legend.background = element_rect(fill = "black"),
panel.border = element_rect(color = "black"),
panel.background = element_rect(fill = "black"),
plot.background = element_rect(fill = "black",
color="black"))
uns2 <- unit(c(-.5,.5,-.45,.25), "cm")
y <- y +
theme(plot.margin = uns2,
text=element_text(color="white"),
legend.text=element_text(color="white"),
legend.background = element_rect(fill = "black"),
plot.background = element_rect(fill = "black",
color="black"))
gA <- ggplotGrob(x)
gB <- ggplotGrob(y)
maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5])
gA$widths[2:5] <- as.list(maxWidth)
gB$widths[2:5] <- as.list(maxWidth)
out <- arrangeGrob(gA, gB, ncol=1, heights = grid::unit(c(.3, .7), "native"))
## grid.draw(out)
invisible(out)
}, lex_text, lex_bar)
FUN <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Content Rate: Romeo and Juliet Act 1"
Legend <- c(.2, -1, 1.5, -.95)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc, i),
width=750, height=875)
}
## Set up the layout
layout(matrix(c(rep(1, 7), rep(2, 6)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(22)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Functional", "Content"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
print(lex_text_bar[[i]], vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=750,
outdir = loc, single.opts =
"'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0")
FUN(TRUE)
## EXAMPLE 2: Line + Text + Bar
## Generate a folder
loc2 <- folder(animation_lexical_classification2)
setwd(loc2)
lex_ani2 <- lexical_classification(mraja1spl$dialogue, mraja1spl$person)
## Set up the bar version
lex_bar <- Animate(lex_ani2, type="bar")
cumline <- cumulative(lex_bar)
lex_line <- plot(cumline)
ylims <- range(cumline[[1]][-c(1:100)]) + c(-.1, .1)
## Set up the text
lex_text <- Animate(lex_ani2, type="text", size = 4, width = 80)
lex_line_text_bar <- Map(function(x, y, z){
mar <- theme(plot.margin = unit(c(0, .5, 0, .25), "cm"))
gA <- ggplotGrob(x + mar +
theme(panel.background = element_rect(fill = NA, colour = NA),
panel.border = element_rect(fill = NA, colour = NA),
plot.background = element_rect(fill = NA, colour = NA)))
gB <- ggplotGrob(y + mar)
gC <- ggplotGrob(z + mar + ylab("Average Content Rate") +
coord_cartesian(ylim = ylims) +
ggtitle("Average Content Rate: Romeo & Juliet Act 1"))
maxWidth <- grid::unit.pmax(gA$widths[2:5], gB$widths[2:5], gC$widths[2:5])
gA$widths[2:5] <- as.list(maxWidth)
gB$widths[2:5] <- as.list(maxWidth)
gC$widths[2:5] <- as.list(maxWidth)
out <- arrangeGrob(gC, gA, gB, ncol=1, heights = grid::unit(c(.38, .25, .37), "native"))
## grid.draw(out)
invisible(out)
}, lex_text, lex_bar, lex_line)
FUN2 <- function(follow=FALSE, theseq = seq_along(lex_line_text_bar)) {
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2, i),
width=750, height=875)
}
print(lex_line_text_bar[[i]])
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
library(animation)
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=750,
outdir = loc2, single.opts =
"'controls': ['first', 'previous', 'play', 'next', 'last', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
#==================#
## Static Network ##
#==================#
(lexdat <- with(sentSplit(DATA, 4), lexical_classification(state, person)))
m <- Network(lexdat)
m
print(m, bg="grey97", vertex.color="grey75")
print(m, title="Lexical Content Discourse Map", title.color="white",
bg="black", legend.text.color="white", vertex.label.color = "grey70",
edge.label.color="yellow")
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m + theme_nightheat(title="Lexical Content Discourse Map",
vertex.label.color = "grey50")
#==================================#
## Content Rate Over Time Example ##
#==================================#
lexpres <- lapply(with( pres_debates2012, split(dialogue, time)), function(x) {
lexical_classification(x)
})
lexplots <- lapply(seq_along(lexpres), function(i) {
dat <- cumulative(lexpres[[i]])
m <- plot(dat)
if (i != 2) m <- m + ylab("")
if (i == 2) m <- m + ylab("Average Content Rate")
if (i != 3) m <- m + xlab(NULL)
if (i != 1) m <- m + theme(plot.margin=unit(c(0, 1, 0, .5) + .1, "lines"))
m + ggtitle(paste("Debate", i)) +
coord_cartesian(xlim = c(300, length(dat[[1]])),
ylim = unlist(range(dat[[1]][-c(1:300)]) + c(-.25, .25)))
})
library(grid)
library(gridExtra)
do.call(grid.arrange, lexplots)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.