polarity | R Documentation |
polarity
- Approximate the sentiment (polarity) of text by grouping
variable(s).
polarity(
text.var,
grouping.var = NULL,
polarity.frame = qdapDictionaries::key.pol,
constrain = FALSE,
negators = qdapDictionaries::negation.words,
amplifiers = qdapDictionaries::amplification.words,
deamplifiers = qdapDictionaries::deamplification.words,
question.weight = 0,
amplifier.weight = 0.8,
n.before = 4,
n.after = 2,
rm.incomplete = FALSE,
digits = 3,
...
)
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
polarity.frame |
A dataframe or hash key of positive/negative words and weights. |
constrain |
logical. If
|
negators |
A character vector of terms reversing the intent of a positive or negative word. |
amplifiers |
A character vector of terms that increase the intensity of a positive or negative word. |
deamplifiers |
A character vector of terms that decrease the intensity of a positive or negative word. |
question.weight |
The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity. |
amplifier.weight |
The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value. |
n.before |
The number of words to consider as valence shifters before the polarized word. |
n.after |
The number of words to consider as valence shifters after the polarized word. |
rm.incomplete |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
... |
Other arguments supplied to |
The equation used by the algorithm to assign value to polarity of
each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to
tag polarized words. A context cluster (x_i^{T}
) of words is
pulled from around this polarized word (default 4 words before and two words
after) to be considered as valence shifters. The words in this context
cluster are tagged as neutral (x_i^{0}
), negator
(x_i^{N}
), amplifier (x_i^{a}
), or de-amplifier
(x_i^{d}
). Neutral words hold no value
in the equation but do affect word count (n
). Each polarized word is
then weighted w
based on the weights from the polarity.frame
argument and then further weighted by the number and position of the valence
shifters directly surrounding the positive or negative word. The researcher
may provide a weight c
to be utilized with amplifiers/de-amplifiers
(default is .8; deamplifier weight is constrained to -1 lower bound). Last,
these context cluster (x_i^{T}
) are summed and divided by the
square root of the word count (\sqrt{n}
) yielding an unbounded
polarity score (\delta
). Note that context clusters containing a
comma before the polarized word will only consider words found after the
comma.
\delta=\frac{x_i^T}{\sqrt{n}}
Where:
x_i^T=\sum{((1 + c(x_i^{A} - x_i^{D}))\cdot w(-1)^{\sum{x_i^{N}}})}
x_i^{A}=\sum{(w_{neg}\cdot x_i^{a})}
x_i^D = \max(x_i^{D'}, -1)
x_i^{D'}= \sum{(- w_{neg}\cdot x_i^{a} + x_i^{d})}
w_{neg}= \left(\sum{x_i^{N}}\right) \bmod {2}
Returns a list of:
all |
A dataframe of scores per row with:
|
group |
A dataframe with the average polarity score by grouping variable:
|
digits |
integer value od number of digits to display; mostly internal use |
The polarity score is dependent upon the polarity dictionary used.
This function defaults to the word polarity dictionary used by Hu, M., &
Liu, B. (2004), however, this may not be appropriate for the context of
children in a classroom. The user may (is encouraged) to provide/augment the
dictionary (see the sentiment_frame
function). For instance the word
"sick" in a high school setting may mean that something is good, whereas
"sick" used by a typical adult indicates something is not right or negative
connotation (deixis).
Also note that polarity
assumes you've run
sentSplit
.
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.
https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for
http://hedonometer.org/papers.html Links to papers on hedonometrics
https://github.com/trestletech/Sermon-Sentiment-Analysis
## Not run:
with(DATA, polarity(state, list(sex, adult)))
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
counts(poldat)
scores(poldat)
plot(poldat)
poldat2 <- with(mraja1spl, polarity(dialogue,
list(sex, fam.aff, died)))
colsplit2df(scores(poldat2))
plot(poldat2)
plot(scores(poldat2))
cumulative(poldat2)
poldat3 <- with(rajSPLIT, polarity(dialogue, person))
poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[,
"ave.polarity"])
poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[,
"polarity"])
htruncdf(scores(poldat3), 10)
htruncdf(counts(poldat3), 15, 8)
plot(poldat3)
plot(poldat3, nrow=4)
qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity")
## Create researcher defined sentiment.frame
POLKEY <- sentiment_frame(positive.words, negative.words)
POLKEY
c("abrasive", "abrupt", "happy") %hl% POLKEY
# Augmenting the sentiment.frame
mycorpus <- c("Wow that's a raw move.", "His jokes are so corny")
counts(polarity(mycorpus))
POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny"))
counts(polarity(mycorpus, polarity.frame=POLKEY))
## ANIMATION
#===========
(deb2 <- with(subset(pres_debates2012, time=="time 2"),
polarity(dialogue, person)))
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
print(bg_black, pause=.75)
bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", pause=.75)
## Save it
library(animation)
library(igraph)
library(plotrix)
loc <- folder(animation_polarity)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN <- function() {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(-1.1, -1.25, -.2, -1.2)
Legend.cex <- 1
lapply(seq_along(bgb), function(i) {
par(mar=c(2, 0, 1, 0), bg="black")
set.seed(10)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
animation::ani.pause()
})
}
FUN()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 500, ani.width=500,
outdir = file.path(loc, "new"), single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Animated corresponding text plot
Animate(deb2, type="text")
#=====================#
## Complex Animation ##
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gridExtra)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Generate a folder
loc2 <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gplots)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Set up the line version
deb2_line <- plot(cumulative(deb2_bar))
## Generate a folder
loc2b <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2b, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2b, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
## Increased complexity
## --------------------
## Helper function to cbind ggplots
cbinder <- function(x, y){
uns_x <- unit(c(-1.3,.15,-.75,.25), "cm")
uns_y <- unit(c(-1.3,.5,-.75,.15), "cm")
x <- x + theme(plot.margin = uns_x,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
y <- y + theme(plot.margin = uns_y,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
plots <- list(x, y)
grobs <- list()
heights <- list()
for (i in 1:length(plots)){
grobs[[i]] <- ggplotGrob(plots[[i]])
heights[[i]] <- grobs[[i]]$heights[2:5]
}
maxheight <- do.call(grid::unit.pmax, heights)
for (i in 1:length(grobs)){
grobs[[i]]$heights[2:5] <- as.list(maxheight)
}
do.call("arrangeGrob", c(grobs, ncol = 2))
}
deb2_combo <- Map(cbinder, deb2_bar, deb2_line)
## Generate a folder
loc3 <- folder(animation_polarity3)
FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc3, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
p <- deb2_combo[[i]]
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN3()
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc3, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN3(TRUE)
##-----------------------------##
## Constraining between -1 & 1 ##
##-----------------------------##
## The old behavior of polarity constrained the output to be between -1 and 1
## this can be replicated via the `constrain = TRUE` argument:
polarity("really hate anger")
polarity("really hate anger", constrain=TRUE)
#==================#
## Static Network ##
#==================#
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
m <- Network(poldat)
m
print(m, bg="grey97", vertex.color="grey75")
print(m, title="Polarity Discourse Map", title.color="white", bg="black",
legend.text.color="white", vertex.label.color = "grey70",
edge.label.color="yellow")
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m+ theme_nightheat(title="Polarity Discourse Map")
#===============================#
## CUMULATIVE POLARITY EXAMPLE ##
#===============================#
# Hedonometrics #
#===============================#
poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE))
polcount <- na.omit(counts(poldat4)$polarity)
len <- length(polcount)
cummean <- function(x){cumsum(x)/seq_along(x)}
cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len)
## Calculate background rectangles
ends <- cumsum(rle(counts(poldat4)$act)$lengths)
starts <- c(1, head(ends + 1, -1))
rects <- data.frame(xstart = starts, xend = ends + 1,
Act = c("I", "II", "III", "IV", "V"))
library(ggplot2)
ggplot() + theme_bw() +
geom_rect(data = rects, aes(xmin = xstart, xmax = xend,
ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) +
geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) +
geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) +
annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30",
label = "Average Polarity", vjust = .3, size=3) +
geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) +
ylab("Cumulative Average Polarity") + xlab("Duration") +
scale_x_continuous(expand = c(0,0)) +
geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04,
label=paste("Act", Act)), size=3) +
guides(fill=FALSE) +
scale_fill_brewer(palette="Set1")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.