knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE)
library(qfratio) require(stats) set.seed(764561)
$$ \DeclareMathOperator{\qfrE}{E} \DeclareMathOperator{\qfrtr}{tr} \DeclareMathOperator{\qfrsgn}{sgn} \DeclareMathOperator{\qfrdiag}{diag} \newcommand{\qfrGmf}[1]{\Gamma ! \left( #1 \right)} \newcommand{\qfrBtf}[2]{B ! \left( #1 , #2 \right)} \newcommand{\qfrbrc}[1]{\left[ {#1} \right]} \newcommand{\qfrC}[2][\kappa]{ C_{#1} ! \left( #2 \right) } \newcommand{\qfrCid}[5]{ C^{#1, #2}{#3} ! \left( #4, #5 \right) } \newcommand{\qfrrf}[2][k]{\left( #2 \right){#1}} \newcommand{\qfrdk}[2][k]{ d_{#1} ! \left( #2 \right) } \newcommand{\qfrdij}[3][k]{ d_{#1} ! \left( #2, #3 \right) } \renewcommand{\det}[1]{\left\lvert #1 \right\rvert} \newcommand{\qfrhgmf}[4]{{}2 F_1 \left( #1 , #2 ; #3 ; #4 \right)} \newcommand{\qfrmvnorm}[3][n]{N{#1} ! \left( #2 , #3 \right)} \newcommand{\qfrcchisq}[1]{\chi_{#1}^2} \newcommand{\qfrnchisq}[2]{\chi^2 ! \left( #1 , #2 \right)} \newcommand{\qfrBtd}[2]{\mathrm{beta} ! \left( #1 , #2 \right)} $$
Since version 1.1.0, qfratio
(CRAN{target="_blank"};
GitHub{target="_blank"})
has a functionality to evaluate probability density and distribution functions
of a (simple) ratio of quadratic forms in normal variables.
This document is to describe theoretical backgrounds and some implementation
details of this functionality.
See the main package vignette (vignette("qfratio")
) for the evaluation of
moments of ratios of quadratic forms.
Most symbols not listed here are largely restricted to individual sections.
Consider the (simple) ratio of quadratic forms in normal variables: \begin{equation} Q = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}} {\mathbf{x}^T \mathbf{B} \mathbf{x}}, \end{equation} where $\mathbf{x} \sim \qfrmvnorm{\boldsymbol{\mu}}{\mathbf{I}_n}$. The denominator matrix $\mathbf{B}$ is assumed to be nonnegative definite, whereas $\mathbf{A}$ can be any symmetric matrix.
A more general case where $\mathbf{x} \sim \qfrmvnorm{\boldsymbol{\mu}}{\boldsymbol{\Sigma}}$ can be transformed into the above form when $\boldsymbol{\Sigma}$ is nonsingular: $\mathbf{x}{\mathrm{new}} = \mathbf{K}^{-1} \mathbf{x}$, $\mathbf{A}{\mathrm{new}} = \mathbf{K}^T \mathbf{A} \mathbf{K}$, etc., where $\mathbf{K}$ is an $n \times n$ matrix that satisfies $\mathbf{K} \mathbf{K}^T = \boldsymbol{\Sigma}$ [@MathaiProvost1992, chapter 3]. When $\boldsymbol{\Sigma}$ is singular, certain conditions need to be met by the argument matrices, $\boldsymbol{\Sigma}$, and $\boldsymbol{\mu}$ for this transformation, and hence the following expressions, to be valid [@Watanabe2023cevo, appendix C].
Assuming $\mathbf{B}$ to be nonnegative definite, the distribution function of $Q$ is \begin{equation} \begin{aligned} F_Q(q) = & \Pr \left( \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}} {\mathbf{x}^T \mathbf{B} \mathbf{x}} \leq q \right) \ = & \Pr \left( \mathbf{x}^T \left( \mathbf{A} - q \mathbf{B} \right) \mathbf{x} \leq 0 \right) , \end{aligned} \end{equation} so that it can be expressed as the distribution function of the quadratic form $X_q = \mathbf{x}^T \left( \mathbf{A} - q \mathbf{B} \right) \mathbf{x}$ at $0$. We are mostly concerned with such $q$ that makes $\mathbf{A} - q \mathbf{B}$ indefinite, because otherwise (i.e., when it is positive or negative (semi)definite) $F_Q(q) = 0, 1$ and $f_Q(q) = 0$.
Consider the spectral decomposition $\mathbf{A} - q \mathbf{B} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^T$, with an orthogonal matrix of eigenvectors $\mathbf{P}$ and a diagonal matrix of eigenvalues $\boldsymbol{\Lambda} = \qfrdiag \left( \lambda_1 , \dots , \lambda_n \right)$, and let $\mathbf{P}^T \mathbf{x} = \mathbf{y} = \left( y_1 , \dots , y_n \right)^T \sim \qfrmvnorm{\boldsymbol{\nu}}{\mathbf{I}n}$ with $\boldsymbol{\nu} = \mathbf{P}^T \boldsymbol{\mu} = \left( \nu_1 , \dots , \nu_n \right)^T$. Then, \begin{equation} \begin{aligned} X_q = & \mathbf{x}^T \left( \mathbf{A} - q \mathbf{B} \right) \mathbf{x} \ = & \mathbf{y}^T \boldsymbol{\Lambda} \mathbf{y} \ = & \sum{i=1}^{n} \lambda_i y_i^2 . \end{aligned} \end{equation} Obviously, $y_i^2 \sim \qfrnchisq{1}{\nu_i^2}$, a noncentral chi-square variable with $1$ degree of freedom and a noncentrality parameter $\nu_i^2$, and by construction these are independent of one another. Thus, $X_q$ is a weighted sum of independent chi-square variables, and the problem boils down to evaluation of the distribution of this quantity.
Explicit formulae for the distribution and density function of $Q$ have been worked out by @Hillier2001 and @Forchini2002[@Forchini2005]. These typically involve infinite series of the top-order zonal and invariant polynomials of matrix arguments. The zonal polynomials are certain homogeneous polynomials of eigenvalues of a symmetric matrix which extend powers of scalars into symmetric matrices [e.g., @Muirhead1982]. The invariant polynomials are further extension of the zonal polynomials to multiple matrix arguments [see @Chikuse1980msa; @Chikuse1987; @Davis1980proc]. These polynomials are used to integrate out components of rotation from a function of random matrices.
@Forchini2002[@Forchini2005] derived explicit expressions of $F_Q$ using the top-order zonal and invariant polynomials.
Let $\boldsymbol{\Lambda}$ from above be arranged and partitioned such that \begin{equation} \boldsymbol{\Lambda} = \left( \begin{matrix} \boldsymbol{\Lambda}1(q) & \mathbf{0}{n_{+} \times n_{-}} & \mathbf{0}{n{+} \times (n - n_{+} - n_{-})} \ \mathbf{0}{n{-} \times n_{+}} & - \boldsymbol{\Lambda}2(q) & \mathbf{0}{n_{-} \times (n - n_{+} - n_{-})} \ \mathbf{0}{(n - n{+} - n_{-}) \times n_{+}} & \mathbf{0}{(n - n{+} - n_{-}) \times n_{-}} & \mathbf{0}{(n - n{+} - n_{-}) \times (n - n_{+} - n_{-})} \end{matrix}\right), \end{equation} where $\boldsymbol{\Lambda}1(q)$ and $- \boldsymbol{\Lambda}_2(q)$ are $n{+}$- and $n_{-}$-dimensional diagonal matrices of positive and negative eigenvalues of $\mathbf{A} - q \mathbf{B}$, respectively. By denoting \begin{equation} \begin{aligned} \boldsymbol{\nu} = & \left( \begin{matrix} \boldsymbol{\nu}1 \ \boldsymbol{\nu}_2 \ \boldsymbol{\nu}_3 \end{matrix}\right) , \ {\boldsymbol{\Lambda}_1^}^{-1} = & \left( \qfrtr \left( {\boldsymbol{\Lambda}_1}^{-1} \right) + \qfrtr \left( {\boldsymbol{\Lambda}_2}^{-1} \right) \right)^{-1} {\boldsymbol{\Lambda}_1}^{-1}, \ {\boldsymbol{\Lambda}_2^}^{-1} = & \left( \qfrtr \left( {\boldsymbol{\Lambda}_1}^{-1} \right) + \qfrtr \left( {\boldsymbol{\Lambda}_2}^{-1} \right) \right)^{-1} {\boldsymbol{\Lambda}_2}^{-1}, \end{aligned} \end{equation} with the partition of $\boldsymbol{\nu}$ corresponding to that of the rows of $\boldsymbol{\Lambda}$ above, the expression of @Forchini2005 is, after correcting some errors, \begin{equation} \begin{aligned} F_Q(q) = & \frac{ \qfrGmf{ \frac{n{+} + n_{-}}{2} } \exp \left[ - \frac{1}{2} \left( \boldsymbol{\nu}1^T \boldsymbol{\nu}_1 + \boldsymbol{\nu}_2^T \boldsymbol{\nu}_2 \right) \right] }{ \qfrGmf{ \frac{n{+}}{2} + 1 } \qfrGmf{ \frac{n_{-}}{2} } \det{\boldsymbol{\Lambda}1^}^{\frac{1}{2}} \det{\boldsymbol{\Lambda}_2^}^{\frac{1}{2}} } \ & \cdot \sum{i_1 = 0}^{\infty} \sum_{j_1 = 0}^{\infty} \sum_{i_2 = 0}^{\infty} \sum_{j_2 = 0}^{\infty} \frac{ \qfrrf[i_1 + j_1 + i_2 + j_2]{\frac{n_{+} + n_{-}}{2}} \qfrrf[i_1 + j_1]{\frac{1}{2}} \qfrrf[i_2 + j_2]{\frac{1}{2}} }{ \qfrrf[i_1 + j_1]{\frac{n_{+}}{2} + 1} \qfrrf[i_2 + j_2]{\frac{n_{-}}{2}} \qfrrf[j_1]{\frac{1}{2}} \qfrrf[j_2]{\frac{1}{2}} i_1! j_1! i_2! j_2! } \ & \quad \cdot \qfrCid{\qfrbrc{i_1}}{\qfrbrc{j_1}}{\qfrbrc{i_1 + j_1}}{ \qfrtr \left( {\boldsymbol{\Lambda}1^}^{-1} \right) \mathbf{I}{n{+}} - {\boldsymbol{\Lambda}_1^}^{-1} }{ \frac{1}{2} {\boldsymbol{\Lambda}_1^}^{-\frac{1}{2}} \boldsymbol{\nu}_1 \boldsymbol{\nu}_1^T {\boldsymbol{\Lambda}_1^}^{-\frac{1}{2}} } \ & \quad \cdot \qfrCid{\qfrbrc{i_2}}{\qfrbrc{j_2}}{\qfrbrc{i_2 + j_2}}{ \qfrtr \left( {\boldsymbol{\Lambda}_2^}^{-1} \right) \mathbf{I}{n{-}} - {\boldsymbol{\Lambda}_2^}^{-1} }{ \frac{1}{2} {\boldsymbol{\Lambda}_2^}^{-\frac{1}{2}} \boldsymbol{\nu}_2 \boldsymbol{\nu}_2^T {\boldsymbol{\Lambda}_2^}^{-\frac{1}{2}} } \ & \quad \cdot {}_2 F_1 \left(\frac{n{+} + n_{-}}{2} + i_1 + j_1 + i_2 + j_2, 1; \frac{n_{+}}{2} + i_1 + j_1 + 1; \qfrtr \left( {\boldsymbol{\Lambda}_1^*}^{-1} \right) \right) , \end{aligned} \end{equation} where $\qfrCid{\qfrbrc{k_1}}{\qfrbrc{k_2}}{\qfrbrc{k_1 + k_2}}{ \cdot }{ \cdot }$ are the top-order invariant polynomials of $(k_1, k_2)$-th degree (see above for other notations).
In the central case ($\boldsymbol{\mu} = \mathbf{0}n$), the above expression simplifies into [@Forchini2002] \begin{equation} \begin{aligned} F_Q(q) = & \frac{ \qfrGmf{ \frac{n{+} + n_{-}}{2} } }{ \qfrGmf{ \frac{n_{+}}{2} + 1 } \qfrGmf{ \frac{n_{-}}{2} } \det{\boldsymbol{\Lambda}1^}^{\frac{1}{2}} \det{\boldsymbol{\Lambda}_2^}^{\frac{1}{2}} } \ & \cdot \sum{i_1 = 0}^{\infty} \sum_{i_2 = 0}^{\infty} \frac{ \qfrrf[i_1 + i_2]{\frac{n_{+} + n_{-}}{2}} \qfrrf[i_1]{\frac{1}{2}} \qfrrf[i_2]{\frac{1}{2}} }{ \qfrrf[i_1]{\frac{n_{+}}{2} + 1} \qfrrf[i_2]{\frac{n_{-}}{2}} i_1! i_2! } \ & \quad \cdot \qfrC[\qfrbrc{i_1}]{ \qfrtr \left( {\boldsymbol{\Lambda}1^}^{-1} \right) \mathbf{I}{n{+}} - {\boldsymbol{\Lambda}_1^}^{-1} } \qfrC[\qfrbrc{i_2}]{ \qfrtr \left( {\boldsymbol{\Lambda}_2^}^{-1} \right) \mathbf{I}{n{-}} - {\boldsymbol{\Lambda}_2^}^{-1} } \ & \quad \cdot {}_2 F_1 \left(\frac{n{+} + n_{-}}{2} + i_1 + i_2, 1; \frac{n_{+}}{2} + i_1 + 1; \qfrtr \left( {\boldsymbol{\Lambda}_1^*}^{-1} \right) \right) , \end{aligned} \end{equation} where $\qfrC[\qfrbrc{k}]{ \cdot }$ are the top-order zonal polynomials of $k$th degree.
These expressions can be numerically evaluated by truncating the infinite series
at certain higher-order terms ($i_1 + j_1 + i_2 + j_2 = m$, say), and by using
a recursive algorithm to calculate
\begin{equation}
\qfrdij[k_1, k_s]{ \mathbf{A}_1 }{ \mathbf{A}_2 } =
\frac{ \qfrrf[k_1 + k_2]{\frac{1}{2}} }{ k_1 ! k_2 !}
\qfrCid{\qfrbrc{k_1}}{\qfrbrc{k_2}}{\qfrbrc{k_1 + k_2}}{ \mathbf{A}_1 }{ \mathbf{A}_2 }
\end{equation}
by @HillierEtAl2009[@HillierEtAl2014] (see also the main vignette qfratio
).
The present package implements this algorithm in
pqfr(..., method = "forchini")
(see below).
The distribution function has points of nonanalyticity around the eigenvalues
of $\mathbf{B}^{-1} \mathbf{A}$ (assuming $\mathbf{B}^{-1}$ is invertible)
[@Forchini2002].
Practically speaking, around these points, the series expression can be slow
to converge and evaluation of the hypergeometric function can fail because
the argument $\qfrtr \left( {\boldsymbol{\Lambda}_1^*}^{-1} \right)$ becomes
very close to 1
.
Otherwise, the series expression can be evaluated with high accuracy,
although the computational cost of the recursive calculations can be substantial
in large problems.
Apparently, the literature has an explicit expression for the density of $Q$ only for the simple condition when $\mathbf{B} = \mathbf{I}_n$ and $\boldsymbol{\mu} = \mathbf{0}_n$. In this case, the distribution of $Q$ does not depend on the norm of $\mathbf{x}$, so any spherically symmetric distribution of $\mathbf{x}$ yields the same distribution of $Q$ [@Hillier2001].
Let $\eta_1 > \dots > \eta_s$ be $s$ distinct eigenvalues of $\mathbf{A}$, and $n_1 , \dots , n_s$ be the corresponding degrees of multiplicity ($\sum_{i=1}^{s} n_i = n$). Consider the transformed variable $V = \frac{Q - \eta_s}{\eta_1 - Q}$ and parameters $\psi_i = \frac{\eta_i - \eta_s}{\eta_1 - \eta_i}$ for $i = 2, \dots s - 1$, assuming $s > 2$ (see below for the case when $s = 2$). The density of $V$ has different functional forms across its domain \begin{equation} \begin{aligned} f_V (v) = & \left[ \qfrBtf{ \frac{p_r}{2} }{ \frac{n - p_r}{2} } \right]^{-1} \left[ \prod_{i=2}^{r+1} \psi_i^{- \frac{n_i}{2}} \right] \left[ \prod_{i=2}^{s-1} (1 + \psi_i)^{\frac{n_i}{2}} \right] v^{\frac{p_r}{2} - 1} (1 + v)^{- \frac{n}{2}} & \ & \quad \cdot \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_r (j, k) \frac{ \qfrrf[j]{\frac{1}{2}} \qfrrf[k]{\frac{1}{2}} }{ j! k! } \qfrC[\qfrbrc{j}]{v \mathbf{D}{r}} \qfrC[\qfrbrc{k}]{\left( v \mathbf{D}{r+1} \right)^{-1}} , & \psi_{r + 2} < v < \psi_{r + 1}, \atop r = 1, \dots , s - 2 , \ f_V (v) = & \left[ \qfrBtf{ \frac{n_s}{2} }{ \frac{n - n_s}{2} } \right]^{-1} \left[ \prod_{i=2}^{s-1} \left( \frac{1 + \psi_i}{\psi_i} \right)^{\frac{n_i}{2}} \right] v^{\frac{n - n_s}{2} - 1} (1 + v)^{- \frac{n}{2}} & \ & \quad \cdot \sum_{k=0}^{\infty} \frac{ \qfrrf{-\frac{n_s}{2} + 1} \qfrrf{\frac{1}{2}} }{ \qfrrf{\frac{n - n_s}{2} + 1} k! } \qfrC[\qfrbrc{k}]{v \mathbf{D}} , & 0 < v < \psi_{s - 1} , \ f_V (v) = & \left[ \qfrBtf{ \frac{n_1}{2} }{ \frac{n - n_1}{2} } \right]^{-1} \left[ \prod_{i=2}^{s-1} \left( 1 + \psi_i \right)^{\frac{n_i}{2}} \right] v^{\frac{n_1}{2} - 1} (1 + v)^{- \frac{n}{2}} & \ & \quad \cdot \sum_{k=0}^{\infty} \frac{ \qfrrf{-\frac{n_1}{2} + 1} \qfrrf{\frac{1}{2}} }{ \qfrrf{\frac{n - n_1}{2} + 1} k! } \qfrC[\qfrbrc{k}]{\left( v \mathbf{D} \right)^{-1}} , & \psi_{2} < v , \end{aligned} \end{equation} where $p_r = \sum_{i=1}^{r+1} n_i$, $\mathbf{D}{r} = \qfrdiag \left( \psi{2}^{-1} \mathbf{I}{n{2}} , \dots , \psi_{r+1}^{-1} \mathbf{I}{n{r+1}} \right)$, $\mathbf{D}{r+1} = \qfrdiag \left( \psi{r+2}^{-1} \mathbf{I}{n{r+2}} , \dots , \psi_{s-1}^{-1} \mathbf{I}{n{s-1}} \right)$, $\mathbf{D} = \qfrdiag \left( \psi_{2}^{-1} \mathbf{I}{n{2}} , \dots , \psi_{s-1}^{-1} \mathbf{I}{n{s-1}} \right)$, and $c_r (j, k)$ are the coefficients defined as \begin{equation} c_r (j, k) = \begin{cases} 1 , & j = k , \ \qfrrf[k-j]{ - \frac{p_r}{2} + 1} \large{/} \qfrrf[k-j]{ \frac{n - p_r}{2} } , & j < k , \ \qfrrf[j-k]{ - \frac{n - p_r}{2} + 1} \large{/} \qfrrf[j-k]{ \frac{p_r}{2} } , & j > k . \ \end{cases} \end{equation} $c_r (j, k)$ can be $0$ when $p_r$ or $n - p_r$ is even, so that some terms in the above series disappear. Otherwise (whenever $c_r (j, k) \neq 0$), it is possible to write \begin{equation} c_r (j, k) = (-1)^{j-k} \frac{\qfrGmf{\frac{p_r}{2}} \qfrGmf{\frac{n - p_r}{2}}}{ \qfrGmf{\frac{p_r}{2} + j - k} \qfrGmf{\frac{n - p_r}{2} + k - j} } , \end{equation} to simplify calculation. The density is undefined at $v = \psi_{i}$ ($q = \eta_i$) for any $i$.
From one of the above expressions, $f_Q(q)$ can be obtained as \begin{equation} \begin{aligned} f_Q (q) = & f_V (v) \cdot \left| \frac{\mathrm{d} q}{\mathrm{d} v} \right| \ = & f_V \left( \frac{q - \eta_s}{\eta_1 - q} \right) \cdot \frac{\eta_1 - \eta_s}{\left( \eta_1 - q \right)^2} . \end{aligned} \end{equation} It is seen that, when $s = 2$ (i.e., there are only two distinct eigenvalues), the above becomes \begin{equation} \begin{aligned} f_Q (q) = & \left[ \qfrBtf{ \frac{n_1}{2} }{ \frac{n_s}{2} } \right]^{-1} \frac{ \left( q - \eta_s \right)^{\frac{n_1}{2} - 1} \left( \eta_1 - q \right)^{\frac{n_s}{2} - 1} }{ \left( \eta_1 - \eta_s \right)^{\frac{n_1 + n_s}{2} - 1} } , \end{aligned} \end{equation} which is the density of the (scaled) beta distribution in the interval $\left[ \eta_s , \eta_1 \right]$ with the parameters $n_1 / 2$ and $n_s / 2$. This result is expected from the basic relationship between the chi-square and beta distributions, i.e., $\qfrcchisq{n_1} / \left( \qfrcchisq{n_1} + \qfrcchisq{n_s} \right) = b \sim \qfrBtd{n_1 / 2}{n_s / 2}$, a standard beta distribution in $[0, 1]$, with $\qfrcchisq{n_i}$ being independent chi-square variables; $Q = \left( \eta_1 \qfrcchisq{n_1} + \eta_s \qfrcchisq{n_s} \right) / \left( \qfrcchisq{n_1} + \qfrcchisq{n_s} \right) = \eta_1 b + \eta_s \left( 1 - b \right) = \left( \eta_1 - \eta_s \right) b + \eta_s$.
As for the above series expression of $F_Q$, these expressions can be
evaluated by taking a partial sum of the series and using the recursive
algorithm for $d$.
dqfr(..., method = "hillier")
implements this algorithm (see below).
This is reasonably quick and accurate in small problems, but
the computational cost can be substantial in large problems.
A popular way to numerically evaluate the distribution function of $Q$ is to use the inversion formula of the characteristic function [e.g., @StuartOrd1994, chapter 4].
From the famous formula of @Imhof1961 on the distribution of $X_q$, \begin{equation} F_Q(q) = \frac{1}{2} - \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \beta (u)}{u \gamma (u)} \, \mathrm{d}u , \end{equation} where \begin{equation} \begin{aligned} \beta (u) = & \frac{1}{2} \sum_{i=1}^{n} \left[ \arctan \left( u \lambda_i \right) + \frac{\nu_i^2 u \lambda_i}{1 + u^2 \lambda_i^2} \right] , \ \gamma (u) = & \prod_{i=1}^{n} \left( 1 + u^2 \lambda_i^2 \right)^{\frac{1}{4}} \exp \left[ \frac{1}{2} \sum_{i=1}^{n} \frac{\nu_i^2 u^2 \lambda_i^2}{1 + u^2 \lambda_i^2} \right] . \end{aligned} \end{equation}
The above integral can be evaluated by using a regular numerical evaluation
algorithm for infinite intervals.
Alternatively, it can be evaluated by the trapezoidal integration algorithm of
@Davies1973[@Davies1980] which explicitly controls the numerical errors
involved.
The package CompQuadForm
implements these methods in the function imhof()
and davies()
, respectively (strictly speaking, these are for $1 - F_Q$
as per Imhof's original result).
The present package utilizes those functions via
pqfr(..., method = "imhof", use_cpp = FALSE)
and
pqfr(..., method = "davies")
, respectively (see below).
For the former method, the present package also has its own C++
implementation
used via pqfr(..., method = "imhof", use_cpp = TRUE)
(default).
The numerical inversion can be evaluated fairly quickly on modern computers,
and the accuracy will be sufficient for most practical purposes with slight
error in numerical integration.
The density can be evaluated by numerical inversion of the characteristic function using Geary's formula [@Geary1944; @StuartOrd1994, section 11.10]. @BrodaPaolella2009 demonstrated that \begin{equation} f_Q(q) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\rho (u) \cos \beta (u) - u \delta (u) \sin \beta (u)}{2 \gamma (u)} \, \mathrm{d}u , \end{equation} where, along with $\beta$ and $\gamma$ defined above, \begin{equation} \begin{aligned} \rho (u) = & \sum_{i=1}^{n} \frac{h_{ii}}{1 + u^2 \lambda_i^2} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{ \nu_i \nu_j h_{ij} \left( 1 - u^2 \lambda_ i \lambda_j \right) }{ \left( 1 + u^2 \lambda_i^2 \right) \left( 1 + u^2 \lambda_j^2 \right)} \ = & \qfrtr \left( \mathbf{H} \mathbf{F}^{-1} \right) + \boldsymbol{\nu}^T \mathbf{F}^{-1} \left( \mathbf{H} - u^2 \boldsymbol{\Lambda} \mathbf{H} \boldsymbol{\Lambda} \right) \mathbf{F}^{-1} \boldsymbol{\nu} , \ \delta (u) = & \sum_{i=1}^{n} \frac{ h_{ii} \lambda_i }{1 + u^2 \lambda_i^2} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{ 2 \nu_i \nu_j h_{ij} \lambda_i }{ \left( 1 + u^2 \lambda_i^2 \right) \left( 1 + u^2 \lambda_j^2 \right)} \ = & \qfrtr \left( \mathbf{H} \boldsymbol{\Lambda} \mathbf{F}^{-1} \right) + 2 \boldsymbol{\nu}^T \mathbf{F}^{-1} \mathbf{H} \boldsymbol{\Lambda} \mathbf{F}^{-1} \boldsymbol{\nu} , \ \end{aligned} \end{equation} with $\mathbf{H} = \mathbf{P}^T \mathbf{B} \mathbf{P} = \left( h_{ij} \right)$ and $\mathbf{F} = \mathbf{I}_n + u^2 \boldsymbol{\Lambda}^2$.
The above expression can be evaluated with a regular numerical integration
algorithm, and is implemented in dqfr(..., method = "broda")
(see below).
Saddlepoint approximation [@Butler2007; @Paolella2007, chapter 5] provides an alternative way to evaluate (or approximate) $F_Q$ and $f_Q$.
Let $M_{X_q}(s)$ be the moment generating function of $X_q$, \begin{equation} M_{X_q}(s) = \prod_{i=1}^{n} \left( 1 - 2 s \lambda_i^2 \right)^{-\frac{1}{2}} \exp \left[ s \sum_{i=1}^{n} \frac{\nu_i^2 \lambda_i}{1 - 2 s \lambda_i^2} \right] . \end{equation} Also, let $K_{X_q}(s) = \log M_{X_q}(s)$ be the corresponding cumulant generating function. These are convergent within the interval $1 / 2 \lambda_n < s < 1 / 2 \lambda_1$, where $\lambda_1$ and $\lambda_n$ are the largest and smallest of the eigenvalues (which are positive and negative, respectively; see above).
For $X_q$, the saddlepoint root $\hat{s}$ is defined as the unique root of \begin{equation} 0 = K_{X_q}' \left( \hat{s} \right) = \sum_{i=1}^{n} \left[ \frac{\lambda_i}{1 - 2 \hat{s} \lambda_i^2} + \frac{\nu_i^2 \lambda_i}{\left( 1 - 2 \hat{s} \lambda_i^2 \right)^2} \right] , \end{equation} and is found numerically within the above interval.
A first-order saddlepoint approximation formula for the distribution function $F_Q$ is [@ButlerPaolella2007; @ButlerPaolella2008]: \begin{equation} \widehat{\Pr{}}1 (Q < q) = \begin{cases} \Phi \left( \hat{w} \right) + \phi \left( \hat{w} \right) \left[ \hat{w}^{-1} - \hat{u}^{-1} \right] , & \text{if } \qfrE \left( X_q \right) \neq 0 , \ \frac{1}{2} + \frac{ K{X_q}'''(0) }{ 6 \sqrt{2 \pi} K_{X_q}''(0)^{3/2} } , & \text{if } \qfrE \left( X_q \right) = 0 , \ \end{cases} \end{equation} where $\Phi \left( \cdot \right)$ and $\phi \left( \cdot \right)$ are the distribution and density functions, respectively, of the standard normal distribution, and \begin{equation} \begin{aligned} \hat{w} = & \qfrsgn \left(\hat{s}\right) \sqrt{-2 K_{X_q} (\hat{s})} , \ \hat{u} = & \hat{s} \sqrt{K_{X_q}'' (\hat{s})} . \end{aligned} \end{equation} The condition $\qfrE \left( X_q \right) = 0$ is equivalent to $\hat{s} = 0$, because of the elementary property of the cumulant generating function $\qfrE \left( X_q \right) = K_{X_q}' \left( 0 \right)$. Higher-order derivatives of $K_{X_q}$ are [see also @Paolella2007, chapter 10] \begin{equation} \begin{aligned} K_{X_q}'' \left( s \right) = & 2 \sum_{i=1}^{n} \frac{ \lambda_i^2 }{\left( 1 - 2 s \lambda_i \right)^2} \left(1 + \frac{ 2 \nu_i^2 }{1 - 2 s \lambda_i} \right) , \ K_{X_q}''' \left( s \right) = & 8 \sum_{i=1}^{n} \frac{ \lambda_i^3 }{\left( 1 - 2 s \lambda_i \right)^3} \left(1 + \frac{ 3 \nu_i^2 }{1 - 2 s \lambda_i} \right) , \ K_{X_q}^{(4)} \left( s \right) = & 48 \sum_{i=1}^{n} \frac{ \lambda_i^4 }{\left( 1 - 2 s \lambda_i \right)^4} \left(1 + \frac{ 4 \nu_i^2 }{1 - 2 s \lambda_i} \right) . \end{aligned} \end{equation}
A more accurate second-order approximation is [@ButlerPaolella2007] \begin{equation} \widehat{\Pr{}}2 (Q < q) = \widehat{\Pr{}}_1 (Q < q) - \phi \left( \hat{w} \right) \left[ \hat{u}^{-1} \left( \frac{\hat{\kappa}_4}{8} - \frac{5}{24} \hat{\kappa}_3^2 \right) - \hat{u}^{-3} - \frac{ \hat{\kappa}_3^2 }{ 2 \hat{u}^2 } + \hat{w}^{-3} \right] , \quad \qfrE \left( X_q \right) \neq 0, \end{equation} where $\hat{\kappa}_j = K{X_q}^{(j)} \left( \hat{s} \right) / K_{X_q}'' \left( \hat{s} \right)^{j/2}$.
Evaluation of saddlepoint approximation is fairly quick, with the only potential complexity arising from the numerical root-finding. Empirically, the accuracy of this approximation seems to improve for large problems. This is expected since the distribution of $X_q$ as a weighted sum approaches normality as $n$ increases.
pqfr(..., method = "butler")
implements this saddlepoint approximation.
The second-order approximation is used by default (order_spa = 2
) (see below).
A first-order saddlepoint approximation for the density function $f_Q$ is [@ButlerPaolella2007; @ButlerPaolella2008] \begin{equation} \hat{f_1}(q) = \frac{ J_q \left( \hat{s} \right) }{ \sqrt{ 2 \pi K_{X_q}'' \left( \hat{s} \right) } } M_{X_q} \left( \hat{s} \right) , \end{equation} where $\hat{s}$ is the same saddlepoint root used above, and \begin{equation} J_q \left( s \right) = \qfrtr \left( \boldsymbol{\Xi}^{-1} \mathbf{H} \right) + \boldsymbol{\nu}^T \boldsymbol{\Xi}^{-1} \mathbf{H} \boldsymbol{\Xi}^{-1} \boldsymbol{\nu} , \end{equation} using notations defined above and $\boldsymbol{\Xi} = \mathbf{I}_n - 2 s \boldsymbol{\Lambda}$.
A second-order approximation is [@ButlerPaolella2007] \begin{equation} \hat{f_2}(q) = \hat{f_1}(q) (1 + O) , \end{equation} where \begin{equation} O = \left( \frac{\hat{\kappa}_4}{8} - \frac{5}{24} \hat{\kappa}_3^2 \right) + \frac{ J_q' \left( \hat{s} \right) \hat{\kappa}_3 }{ 2 J_q \left( \hat{s} \right) \sqrt{K_q'' \left( \hat{s} \right)} } - \frac{ J_q'' \left( \hat{s} \right) }{ 2 J_q \left( \hat{s} \right) K_q'' \left( \hat{s} \right) } , \end{equation} with \begin{equation} \begin{aligned} J_q' \left( s \right) = & 2 \qfrtr \left( \boldsymbol{\Xi}^{-1} \boldsymbol{\Lambda} \boldsymbol{\Xi}^{-1} \mathbf{H} \right) + 4 \boldsymbol{\nu}^T \boldsymbol{\Xi}^{-1} \boldsymbol{\Lambda} \boldsymbol{\Xi}^{-1} \mathbf{H} \boldsymbol{\Xi}^{-1} \boldsymbol{\nu} \ = & 2 \qfrtr \left( \boldsymbol{\Xi}^{-2} \boldsymbol{\Lambda} \mathbf{H} \right) + 4 \boldsymbol{\nu}^T \boldsymbol{\Xi}^{-2} \boldsymbol{\Lambda} \mathbf{H} \boldsymbol{\Xi}^{-1} \boldsymbol{\nu} , \ J_q'' \left( s \right) = & 8 \qfrtr \left( \boldsymbol{\Xi}^{-3} \boldsymbol{\Lambda}^{2} \mathbf{H} \right) + 16 \boldsymbol{\nu}^T \boldsymbol{\Xi}^{-3} \boldsymbol{\Lambda}^{2} \mathbf{H} \boldsymbol{\Xi}^{-1} \boldsymbol{\nu} + 8 \boldsymbol{\nu}^T \boldsymbol{\Xi}^{-2} \boldsymbol{\Lambda} \mathbf{H} \boldsymbol{\Lambda} \boldsymbol{\Xi}^{-2} \boldsymbol{\nu} , \end{aligned} \end{equation} ($\boldsymbol{\Xi}^{-1}$ and $\boldsymbol{\Lambda}$ commute since these are diagonal matrices).
dqfr(..., method = "butler")
implements this saddlepoint approximation
in a very similar way to pqfr(..., method = "butler")
(see below).
The above expressions for the distribution and density functions
are implemented in pqfr()
and dqfr()
, which are defined as:
pqfr <- function(quantile, A, B, p = 1, mu = rep.int(0, n), Sigma = diag(n), lower.tail = TRUE, log.p = FALSE, method = c("imhof", "davies", "forchini", "butler"), trim_values = TRUE, return_abserr_attr = FALSE, m = 100L, tol_zero = .Machine$double.eps * 100, tol_sing = tol_zero, ...) { ... } dqfr <- function(quantile, A, B, p = 1, mu = rep.int(0, n), Sigma = diag(n), log = FALSE, method = c("broda", "hillier", "butler"), trim_values = TRUE, normalize_spa = FALSE, return_abserr_attr = FALSE, m = 100L, tol_zero = .Machine$double.eps * 100, tol_sing = tol_zero, ...) { ... }
The basic usage is similar to that of regular probability distribution
functions like stats::pnorm()
, just with many optional arguments to specify
evaluation methods and behaviors at edge cases.
These functions are (pseudo-)vectorized with respect to quantile
(a vector of $q$), using sapply()
.
Log-transformed $p$-values or densities can be obtained by turning
log.p = TRUE
or log = TRUE
, but these are just ad-hoc transformations
of the results so are not supposed to provide as much numerical accuracy
as in regular probability distribution functions.
There is also qqfr()
for the corresponding quantile function, which is
defined as:
qqfr <- function(probability, A, B, p = 1, mu = rep.int(0, n), Sigma = diag(n), lower.tail = TRUE, log.p = FALSE, trim_values = FALSE, return_abserr_attr = FALSE, stop_on_error = FALSE, m = 100L, tol_zero = .Machine$double.eps * 100, tol_sing = tol_zero, epsabs_q = .Machine$double.eps ^ (1/2), maxiter_q = 5000, ...) { ... }
This function is not based on any explicit inverse function, but does
numerical root-finding using stats::uniroot()
, internally calling pqfr()
;
i.e., by searching the root q
of pqfr(q, ...) - probability = 0
.
Internally, these functions first check basic argument structures, and, if
Sigma
is specified, transform the arguments A
, B
, and mu
and call
themselves recursively with new arguments.
The evaluation method is specified by the argument method
in these
functions (by default, both functions choose a numerical inversion method).
According to the choice, the actual calculations are done in one of the
internal functions described below.
Direct use of the internal functions are not recommended.
These internal functions only accept a length-one quantile
.
To reduce computational time, they do not check argument structures
or accommodate Sigma
.
## Choice from alternative methods A <- diag(1:3) pqfr(1.5, A, method = "imhof") # default pqfr(1.5, A, method = "davies") # similar pqfr(1.5, A, method = "forchini") # series pqfr(1.5, A, method = "butler") # spa dqfr(1.5, A, method = "broda") # default dqfr(1.5, A, method = "hillier") # series dqfr(1.5, A, method = "butler") # spa ## Not recommended; for diagnostic use only qfratio:::pqfr_imhof(1.5, A) qfratio:::pqfr_A1B1(1.5, A, m = 9, check_convergence = FALSE) ## This is okay x <- c(1.5, 2.5, 3.5) pqfr(x, A) ## This is not qfratio:::pqfr_imhof(x, A)
ks.test()
In principle, pqfr()
is compatible with stats:::ks.test()
,
but care must be exercised as evaluation result may involve non-trivial error.
It is recommended to inspect error bounds beforehand, using
pqfr(..., method = "imhof", return_abserr_attr = TRUE)
.
In addition, the argument B
is pre-occupied by the same-named argument
in ks.test()
, so it cannot be passed via ...
;
this means that a typical syntax with non-default B
should be something like
ks.test(x, function(q) pqfr(q, A, B, ...))
rather than
ks.test(x, pqfr, A = A, B = B, ...))
.
For example,
## Small Monte Carlo sample A <- diag(1:3) B <- diag(sqrt(1:3)) x <- rqfr(10, A, B) ## Calculate p-values pseq <- pqfr(x, A, B, return_abserr_attr = TRUE) ## Maximum error when evaluated at x; ## looks small enough max(attr(pseq, "abserr")) ## Correct syntax, expected outcome ## \(q) syntax could also be used in recent versions of R ks.test(x, function(q) pqfr(q, A, B))
rather than
## Incorrect; no error/warning because ## B is passed to ks.test rather than to pqfr ks.test(x, pqfr, A = A, B = B)
## Used in pqfr(..., method = "forchini") pqfr_A1B1 <- function(quantile, A, B, m = 100L, mu = rep.int(0, n), check_convergence = c("relative", "strict_relative", "absolute", "none"), stop_on_error = FALSE, use_cpp = TRUE, cpp_method = c("double", "long_double", "coef_wise"), nthreads = 1, tol_conv = .Machine$double.eps ^ (1/4), tol_zero = .Machine$double.eps * 100, tol_sing = tol_zero, thr_margin = 100) { ... } ## Used in dqfr(..., method = "hillier") dqfr_A1I1 <- function(quantile, LA, m = 100L, check_convergence = c("relative", "strict_relative", "absolute", "none"), use_cpp = TRUE, tol_conv = .Machine$double.eps ^ (1/4), thr_margin = 100) { ... }
These functions evaluate the above series expressions as partial sums
of the infinite series, using the recursive algorithm to calculate $d$
(d1_i()
or d2_ij_m()
), as in the moment-related functions of this package
(see the vignette for moments vignette("qfratio")
).
Most of the arguments are common with those functions.
A <- diag(1:3) pqfr(1.5, A, method = "forchini") dqfr(1.5, A, method = "hillier") B <- diag(sqrt(1:3)) pqfr(1.5, A, B, method = "forchini") ## dqfr method does not accommodate B, mu, or Sigma dqfr(1.5, A, B, method = "hillier")
As stated above, the density is undefined, and the distribution function has points of nonanalyticity, at the eigenvalues of $\mathbf{B}^{-1} \mathbf{A}$ (assuming nonsingular $\mathbf{B}$; Hillier 2001; Forchini 2002). Around these points, convergence of the series expressions tends to be very slow, and the evaluation of hypergeometric function involved in the distribution function may fail. In this case, avoid using the series expression methods.
A <- diag(1:3) ## p-value just below 2, an eigenvalue of A ## Typically throws two warnings: ## Maximum iteration in hypergeometric function ## and non-convergence of series pqfr(1.9999, A, method = "forchini") ## More realistic value; expected from symmetry pqfr(1.9999, A, method = "imhof")
## Used in pqfr(..., method = "imhof") (default) pqfr_imhof <- function(quantile, A, B, mu = rep.int(0, n), autoscale_args = 1, stop_on_error = TRUE, use_cpp = TRUE, tol_zero = .Machine$double.eps * 100, epsabs = epsrel, epsrel = 1e-6, limit = 1e4) { ... } ## Used in pqfr(..., method = "davies") pqfr_davies <- function(quantile, A, B, mu = rep.int(0, n), autoscale_args = 1, tol_zero = .Machine$double.eps * 100, ...) { ... } ## Used in dqfr(..., method = "broda") (default) dqfr_broda <- function(quantile, A, B, mu = rep.int(0, n), autoscale_args = 1, stop_on_error = TRUE, use_cpp = TRUE, tol_zero = .Machine$double.eps * 100, epsabs = epsrel, epsrel = 1e-6, limit = 1e4) { ... }
pqfr_imhof(..., use_cpp = TRUE)
and dqfr_broda(..., use_cpp = TRUE)
conduct numerical integration by the C
function
gsl_integration_qagi(..., epsabs, epsrel, limit)
from GSL
.
The arguments epsabs
, epsrel
, and limit
determine the permissible bounds
of absolute and relative errors, and the maximum number of integration
intervals, respectively.
dqfr_broda(..., use_cpp = FALSE)
uses the R
function
stats::integrate(..., rel.tol = epsrel, abs.tol = epsabs, stop.on.error = stop_on_error)
,
instead, and limit
is ignored.
pqfr_imhof(..., use_cpp = FALSE)
and pqfr_davies()
calculate appropriate
parameters from the arguments and pass them to imhof()
and davies()
from
the CompQuadForm
package.
The above integration functions try to find an absolute error bound $e_I$ that is bounded by the user-specified tolerance for absolute $\epsilon_{\mathrm{abs}}$ and relative $\epsilon_{\mathrm{rel}}$ errors: $e_I \leq \epsilon_{\mathrm{abs}} + \lvert I \rvert \epsilon_{\mathrm{rel}}$, where $I$ is the result of integration.
Internally, $\epsilon_{\mathrm{abs}}$ is calculated from the user-specified
arguments epsabs
and epsrel
to appropriately constrain the density
or distribution function (whereas $\epsilon_{\mathrm{rel}}$ is always
specified by epsrel
).
In dqfr_broda()
, pi * epsabs
is used as $\epsilon_{\mathrm{abs}}$,
and the resultant error bound abserr
is subsequently divided by pi
,
so is the integration result itself to yield the density: $f_Q = I / \pi$
(see above).
Situation is more complicated for pqfr_imhof()
, because the relative error in
$I$ cannot in general be directly transformed to that of the distribution
function, which is $F_Q = 1/2 - I / \pi$ (see above).
In this function, pi * (epsabs * epsrel / 2)
is passed as
$\epsilon_{\mathrm{abs}}$, and the resultant error bound abserr
is divided
by pi
.
This procedure ensures an equivalent of the above inequality to hold for
$F_Q$, provided $I \leq 0$ ($F_Q \geq 1/2$) or $\epsilon_{\mathrm{rel}} = 0$.
Otherwise, an error bound calculated in the same way can only be conservative;
pqfr_imhof()
returns this value, but it can violate the user-specified
relative tolerance epsrel
.
A <- diag(1:4) ## This error bound satisfies "abserr < value * epsrel" pqfr(3.9, A, method = "imhof", return_abserr_attr = TRUE, epsabs = 0, epsrel = 1e-6) ## This one violates "abserr < value * epsrel", ## although abserr is a valid error bound pqfr(1.2, A, method = "imhof", return_abserr_attr = TRUE, epsabs = 0, epsrel = 1e-6)
autoscale_args
Numerical integration involved in these functions typically fail when
the magnitude of eigenvalues is too small or too large, whence the integrand
functions can decrease too slowly (i.e., divergent-looking) or too quickly
(i.e., looks constant 0
) with respect to the integration parameter
($u$ above).
To avoid such failures, these functions internally scale the eigenvalues
by default, so that $\max \lambda_i - \min \lambda_i$ is equal to
the argument autoscale_args
(default 1
); remember that $\min \lambda_i$ is
negative, so this quantity is sum of the absolute values.
A <- diag(1:3) B <- diag(sqrt(1:3)) ## Without autoscale_args ## We know these are equal pqfr(1.5, A, B, autoscale_args = FALSE) pqfr(1.5, A * 1e-10, B * 1e-10, autoscale_args = FALSE) ## The latter failed because of numerically small eigenvalues ## With autoscale_args = 1 (default) pqfr(1.5, A * 1e-10, B * 1e-10)
trim_values
Numerical integration can yield spurious results that are outside
the mathematically permissible supports; $[ 0, \infty )$ and $[0, 1]$ for
the density and distribution functions, respectively.
By default (trim_values = TRUE
), the external functions
dqfr()
and pqfr()
trim those values into the permissible
range by using tol_zero
as a margin; e.g., negative p-values are
replaced by ~2.2e-14
(default tol_zero
). A warning is
thrown if this happens, because it usually means that numerically accurate
evaluation was impossible, at least with the given parameters. Turn
trim_values = FALSE
to skip these trimming and warning, although
pqfr_imhof()
and pqfr_davies()
can still throw a warning
from CompQuadForm
functions. Note that, on the other hand,
all these functions try to return exact 0
or 1
when $q$ is outside the possible range of $Q$ (as numerically determined).
## Result without trimming; ## (typically) negative density, which is absurd ## In this case, error interval typically spans across 0 dqfr(1.2, diag(1:30), return_abserr_attr = TRUE, trim_values = FALSE) ## Result with trimming (default) dqfr(1.2, diag(1:30), return_abserr_attr = TRUE) ## Note that the actual value is only bounded by ## 0 and abserr
## Used in pqfr(..., method = "butler") pqfr_butler <- function(quantile, A, B, mu = rep.int(0, n), order_spa = 2, stop_on_error = FALSE, use_cpp = TRUE, tol_zero = .Machine$double.eps * 100, epsabs = .Machine$double.eps ^ (1/2), epsrel = 0, maxiter = 5000) { ... } ## Used in dqfr(..., method = "butler") dqfr_butler <- function(quantile, A, B, mu = rep.int(0, n), order_spa = 2, stop_on_error = FALSE, use_cpp = TRUE, tol_zero = .Machine$double.eps * 100, epsabs = .Machine$double.eps ^ (1/2), epsrel = 0, maxiter = 5000) { ... }
These functions evaluate the saddlepoint approximations described above.
They conduct numerical root-finding for the saddlepoint by
the Brent method (C
function gsl_root_fsolver_brent
from GSL
), with
the stopping rule specified by gsl_root_test_delta(..., epsabs, epsrel)
and
the maximum number of iteration by maxiter
.
When use_cpp = FALSE
, the R
function
stats::uniroot(..., check.conv = stop_on_error, tol = epsabs, maxiter = maxiter)
is used instead, and epsrel
is ignored.
The Newton--Raphson method was also explored in the development stage, but
that method sometimes failed because the derivative can be numerically close to
0
.
The saddlepoint approximation density does not integrate to unity,
but can be normalized by setting normalize_spa = TRUE
in dqfr()
(note that this is done in the external function).
The normalized density can be more accurate (although it is usually a matter of
empiricism).
However, this is usually slower than the numerical inversion method
for a small number of quantiles.
The second-order approximation is used by default (order_spa = 2
)
(internally, any value > 1
calls this option).
The first-order approximation can be used by setting order_spa = 1
,
but this is usually less accurate and only slightly faster than
the second-order approximation.
A <- diag(1:3) ## Default for spa distribution function pqfr(1.2, A, method = "butler", order_spa = 2) ## First-order spa pqfr(1.2, A, method = "butler", order_spa = 1) ## More accurate numerical inversion pqfr(1.2, A) ## Default for density dqfr(1.2, A, method = "butler", order_spa = 2, normalize_spa = FALSE) ## First-order dqfr(1.2, A, method = "butler", order_spa = 1, normalize_spa = FALSE) ## Normalized density, second-order dqfr(1.2, A, method = "butler", order_spa = 2, normalize_spa = TRUE) ## Normalized density, first-order dqfr(1.2, A, method = "butler", order_spa = 1, normalize_spa = TRUE) ## More accurate numerical inversion dqfr(1.2, A)
@Paolella2007[program listing 10.4] noted that the second-order approximation for the distribution function can be "problematic", which presumably means that the evaluation result can be unstable. In development of this package, some instability in the second-order approximation was encountered, but experiments suggest that this was due to sensitivity of the result to the numerically found root $\hat{s}$. This instability is rarely encountered with the present default setting, but the user may want to adjust root-finding-related parameters when any doubt exists.
pqfr()
and dqfr()
Return values from pqfr_imhof()
and dqfr_broda()
have an error bound
abserr
for numerical integration, along with the evaluation result itself.
Technically, the error bound from the integration algorithm is divided by
pi
before returned, as the evaluation result itself is.
This can be passed to the external functions and returned as an attribute
by setting return_abserr_attr = TRUE
(as already used in above examples):
A <- diag(1:4) pqfr(1.5, A, return_abserr_attr = TRUE) dqfr(1.5, A, return_abserr_attr = TRUE)
This error bound tries to accommodate the effect of trim_values
.
If the integration result is outside the permissible support
(e.g., negative density), the possible error bound is only on the direction
toward the support (assuming things are calculated accurately).
The returned abserr
is truncated accordingly, unless trimming is
beyond the original abserr
(in which case it is replaced by tol_zero
).
See this in examples:
## Without trimming, result is (typically) negative ## But note that value + abserr is positive dqfr(1.2, diag(1:35), return_abserr_attr = TRUE, epsabs = 1e-10, trim_values = FALSE) ## With trimming, value is replaced by tol_zero ## Note slightly shortened abserr dqfr(1.2, diag(1:35), return_abserr_attr = TRUE, epsabs = 1e-10) ## When untrimmed value + abserr < tol_zero dqfr(1.1, diag(1:35), return_abserr_attr = TRUE, epsabs = 1e-15, trim_values = FALSE) ## True value is somewhere between 0 and value + abserr ## (assuming these are reliable) ## When trimmed, abserr reflects tol_zero ## because the true value is between 0 and tol_zero dqfr(1.1, diag(1:35), return_abserr_attr = TRUE, epsabs = 1e-15)
When log
/log.p = TRUE
, abserr
is transformed so that
it is a conservative absolute error bound on the log scale.
That is, if the original value and its error bound is denoted by
$\hat{x}$ and $\delta \hat{x}$, respectively, and the
log-transformed value and its error bound is by $\log \hat{x}$ and
$\delta (\log \hat{x})$, the latter error bound is set so that
$\log \hat{x} - \delta (\log \hat{x}) = \log (\hat{x} - \delta \hat{x})$, i.e.,
$\delta (\log \hat{x}) = - \log \left( 1 - \frac{\delta \hat{x}}{\hat{x}} \right)$.
Note that the upper error bound
$\log \left( 1 + \frac{\delta \hat{x}}{\hat{x}} \right)$ is narrower than this
unless $\delta \hat{x} > \hat{x}$ (i.e., $\hat{x} - \delta \hat{x} < 0$),
in which case it should be taken as $\delta (\log \hat{x}) = \infty$.
In summary, the new error bound is calculated as
ifelse(abserr > ans, Inf, -log1p(-abserr/ans))
.
qqfr()
The option return_abserr_attr = TRUE
is available in qqfr()
as well:
A <- diag(1:4) qqfr(0.95, A, return_abserr_attr = TRUE)
In qqfr()
, numerical errors arise from the root-finding with
stats::uniroot()
as well as in propagation from pqfr()
.
When return_abserr_attr = TRUE
, it tries to evaluate a conservative
error bound as follows:
uniroot()$estim.prec
as $\delta q_{\mathrm{rf}}$pqfr()
at the root as $\delta F$dqfr(..., method = "broda")
, so that
the conservative slope of the tangent there is $b = \max ( f - \delta f , 0 )$.
The error $\delta q_{\mathrm{p}}$ in the root arising from pqfr()
is at most
$b^{-1} \delta F$.
If $\delta F = 0$, $\delta q_{\mathrm{p}} = 0$ regardless of $b$.If log.p = TRUE
, the root-finding is done on $\log F$, so the slope used in 3
is replaced by $b = \max ( f - \delta f , 0 ) / F$.
For probability = 0
or 1
, the quantile corresponds to the minimum or
maximum of the ratio, and the above error bound does not apply.
At present, an arbitrary value of .Machine$double.eps * 100
(~2.2e-14
)
is returned as an error bound for a finite minimum/maximum, although
the actual error in calculation can be larger.
qqfr(0, A, return_abserr_attr = TRUE)
For completeness, pqfr()
and dqfr()
can be used to evaluate powers of
ratios of quadratic forms, $Q^p$, with the exponent specified by the argument
p
(default 1
).
Note that, unlike moment-related functions of this package, the numerator
and denominator must have the same exponent.
When p != 1
, these functions return appropriate results typically by
transforming those from p == 1
with recursive calling.
For the rest of this section, consider the distribution and density functions of $R = Q^p$ at $r = q^p$. The Jacobian for the density is $\left| \frac{\mathrm{d} q}{\mathrm{d} r} \right| = \frac{1}{p} \left| r \right| ^ {\frac{1}{p} - 1}$.
In this case, the relationship between $Q$ and $R$ is one-to-one, so that
\begin{equation}
\begin{aligned}
F_{R}(r)
= &
\Pr \left( Q^p \leq r \right) \
= &
\Pr \left( Q \leq \qfrsgn{(r)} \cdot \left| r \right| ^{\frac{1}{p}} \right) \
= &
F_{Q} \left( \qfrsgn{(r)} \cdot \left| r \right| ^{\frac{1}{p}} \right) , \
f_{R}(r)
= &
f_{Q}(q) \cdot \left| \frac{\mathrm{d} q}{\mathrm{d} r} \right| \
= &
f_{Q} \left( \qfrsgn{(r)} \cdot \left| r \right| ^{\frac{1}{p}} \right) \cdot \frac{1}{p} \left| r \right| ^ {\frac{1}{p} - 1} .
\end{aligned}
\end{equation}
Thus, the result can be obtained by a single recursive call of
pqfr(..., p = 1)
or dqfr(..., p = 1)
with transformed quantile
.
In this case, $R$ is an even function of $Q$, so that
\begin{equation}
\begin{aligned}
F_{R}(r)
= &
\Pr \left( Q^p \leq r \right) \
= &
\begin{cases}
\Pr \left( Q \leq r^{\frac{1}{p}} \right) -
\Pr \left( Q < - r^{\frac{1}{p}} \right)
= F_{Q} \left( r^{\frac{1}{p}} \right) - F_{Q} \left( - r^{\frac{1}{p}} \right) , & r > 0 , \
0 , & r \leq 0 ,
\end{cases} \
f_{R}(r)
= &
\begin{cases}
\left[ f_{Q} \left( r^{\frac{1}{p}} \right) +
f_{Q} \left( - r^{\frac{1}{p}} \right) \right]
\cdot \left| \frac{\mathrm{d} q}{\mathrm{d} r} \right| , & r > 0 , \
f_{Q}(0) \cdot \left| \frac{\mathrm{d} q}{\mathrm{d} r} \right|
= \infty , & r = 0 , \
0 , & r < 0 .
\end{cases}
\end{aligned}
\end{equation}
Thus, for $r > 0$, the result is obtained from two recursive calls of
pqfr(..., p = 1)
or dqfr(..., p = 1)
with transformed quantile
.
In this case, $R$ can be undefined, so pqfr()
and dqfr()
return an error,
"A must be nonnegative definite when p is non-integer"
,
regardless of the value of quantile
.
First we compare evaluation methods for the distribution function:
A <- diag(1:4) qseq <- seq.int(0.8, 4.2, length.out = 100) ## Generate p-value sequences ## Warning is expected pseq_inv <- pqfr(qseq, A, method = "imhof", return_abserr_attr = TRUE) pseq_ser <- pqfr(qseq, A, method = "forchini", check_convergence = FALSE) pseq_spa <- pqfr(qseq, A, method = "butler") ## Maximum error in numerical inversion; ## looks small enough max(attr(pseq_inv, "abserr")) ## Graphical comparison par(mar = c(4, 4, 0.1, 0.1)) plot(qseq, type = "n", xlim = c(1, 4), ylim = c(0, 1), xlab = "q", ylab = "F(q)") lines(qseq, pseq_inv, col = "gray", lty = 1) lines(qseq, pseq_ser, col = "tomato", lty = 2) lines(qseq, pseq_spa, col = "slateblue", lty = 3) legend("topleft", legend = c("inversion", "series", "saddlepoint"), col = c("gray", "tomato", "slateblue"), lty = 1:3, cex = 0.8) ## Logical vector to exclude q around eigenvalues of A avoid_evals <- ((qseq %% 1) > 0.05) & ((qseq %% 1) < 0.95) ## Numerical comparison all.equal(pseq_inv[avoid_evals], pseq_ser[avoid_evals], check.attributes = FALSE) all.equal(pseq_inv[avoid_evals], pseq_spa[avoid_evals], check.attributes = FALSE)
Around the eigenvalues of A
, the series expression is slow to converge;
this could partly be mitigated by using larger m
(default 100
),
but that will usually be time-consuming, and evaluation of hypergeometric
function may fail regardless (for which a warning is already thrown above).
Apart from these points, the series and numerical inversion methods yield
very similar values.
The saddlepoint approximation yields slightly inaccurate result,
but is usually the fastest among these methods.
Next, we compare methods for the probability density:
## Generate p-value sequences dseq_inv <- dqfr(qseq, A, method = "broda", return_abserr_attr = TRUE) dseq_ser <- dqfr(qseq, A, method = "hillier", check_convergence = FALSE) dseq_spa <- dqfr(qseq, A, method = "butler") ## Maximum error in numerical inversion; ## looks small enough max(attr(dseq_inv, "abserr")) ## Graphical comparison par(mar = c(4, 4, 0.1, 0.1)) plot(qseq, type = "n", xlim = c(1, 4), ylim = c(0, 0.8), xlab = "q", ylab = "f(q)") lines(qseq, dseq_inv, col = "gray", lty = 1) lines(qseq, dseq_ser, col = "tomato", lty = 2) lines(qseq, dseq_spa, col = "slateblue", lty = 3) legend("topleft", legend = c("inversion", "series", "saddlepoint"), col = c("gray", "tomato", "slateblue"), lty = 1:3, cex = 0.8) ## Numerical comparison all.equal(dseq_inv, dseq_ser, check.attributes = FALSE) all.equal(dseq_inv, dseq_spa, check.attributes = FALSE) ## Do densities sum up to 1? sum(dseq_inv * diff(qseq)[1]) sum(dseq_ser * diff(qseq)[1]) sum(dseq_spa * diff(qseq)[1])
The series expression looks successful across the range. The saddlepoint approximation usually fails to capture a fancy profile as seen in the above plot. That will be less of a concern as the dimensionality increases, in which case the distribution approaches normality.
The last three lines conduct a rough check on whether the densities
integrate/sum up to unity.
The results for the inversion and series methods are expected to approach 1
as we use a finer sequence.
The saddlepoint approximation density could be normalized at the cost of
slight computational time, although the normalization may or may not yield
more accurate results at a particular quantile:
## Normalized saddlepoint approximation density dseq_spa_normalized <- dqfr(qseq, A, method = "butler", normalize_spa = TRUE) all.equal(dseq_inv, dseq_spa_normalized, check.attributes = FALSE) sum(dseq_spa_normalized * diff(qseq)[1])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.