pseudo_opt | R Documentation |
Find an optimal pseudo-target in a specified family to approximate the given (unnormalized) target (Heiner et al., 2024+). Optimize over the selected utility function.
pseudo_opt(
log_target = NULL,
samples = NULL,
type = "samples",
family = "t",
degf = c(1, 5, 20),
lb = -Inf,
ub = Inf,
utility_type = "AUC",
nbins = 100,
tol_opt = 1e-06,
tol_int = 0.001,
plot = TRUE,
verbose = FALSE
)
log_target |
Function to evaluate the log density of the unnormalized target. |
samples |
Optional numeric vector providing samples from the target distribution
(for use as alternative to |
type |
String specifying the input type. One of "function", "samples", or "grid". Default is to use "samples". Use of "function" requires specification of Use of "samples" requires specification of |
family |
String specifying the family of distributions for the pseudo-target. Can be any of the families accepted by pseudo_list. |
degf |
Numeric vector of degrees of freedom values to try (only if |
lb |
Numeric scalar giving the value of left truncation. Defaults to |
ub |
Numeric scalar giving the value of right truncation. Defaults to |
utility_type |
String identifying utility type, either AUC (default) or MSW. |
nbins |
Positive integer specifying the number of histogram bins if using "samples" or "grid". Defaults to 100. |
tol_opt |
Positive numeric scalar that passes to |
tol_int |
Positive numeric scalar that passes to |
plot |
Logical for whether to generate two plots:
Defaults to |
verbose |
Logical for whether to print intermediate steps of optimization.
Defaults to |
Optionally supply samples from the target distribution.
A list with named components:
pseudo
: a list with functions corresponding to the selected pseudo-target;
output of pseudo_list.
utility
: value of the utility function using the selected pseudo-target;
output of utility_pseudo.
utility_type
: repeats the input specifying the utility type.
opt
: output of optim.
Other outputs repeating inputs.
Heiner, M. J., Johnson, S. B., Christensen, J. R., and Dahl, D. B. (2024+), "Quantile Slice Sampling," arXiv preprint arXiv:###
(pseu <- pseudo_opt(samples = rnorm(1e3), type = "samples",
family = "t", utility_type = "AUC",
nbins = 10, plot = TRUE,
verbose = FALSE))
oldpar <- par(mfrow = c(1,2))
(pseu <- pseudo_opt(log_target = function(x) dnorm(x, log = TRUE),
type = "function",
family = "logistic", utility_type = "AUC",
nbins = 100, plot = TRUE,
verbose = FALSE))
(pseu <- pseudo_opt(log_target = function(x) dbeta(x, 4, 2, log = TRUE),
lb = 0, ub = 1,
type = "function",
family = "cauchy", utility_type = "AUC",
nbins = 30, plot = TRUE,
verbose = FALSE))
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.