View source: R/dispersal_kernels.R
k_weibull | R Documentation |
k_weibull
computes the value, multiplied by N
, of the dispersal
kernel from Tufto et al. (1997) based on seeds having a distance with a
Weibull distribution from their source.
k_weibull(x, par, N = 1, d = NCOL(x))
x |
Numeric matrix of positions |
par |
Numeric vector with two elements representing the
log-transformed scale and shape parameters |
N |
The multiplier |
d |
The spatial dimension. |
The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source, is here given by
k(x)={b\Gamma (d/2) \over 2\pi ^{d/2}a^{b}}\left\|{x}\right\|^{b-d}
e^{-(\left\|{x}\right\|/a)^{b}},
which corresponds to a probability density of the distance given by
p(r)={b \over a^{b}}r^{b-1}e^{-(r/a)^{b}},
where d
is the spatial dimension, \left\|{\,}\right\|
denotes the Euclidean norm and the normalizing constants involve the
gamma function; see Tufto et al. (1997) for the planar
case. Thus, the distance is assumed to have the
Weibull distribution with scale parameter a
and shape parameter b
. Equivalently, the b
th power of the
distance has an exponential distribution with scale parameter a^{b}
.
Consequently, if and only if b<1
, the distance distribution has
a heavier tail than an exponential distribution, although with tail
probabilities still decreasing faster than any power law; it is a
fat-tailed distribution in the sense of Kot et al. (1996). The kernel
coincides with a Gaussian kernel in the special case b=d=2
.
Numeric vector of function values k(x)
multiplied by N
.
Tufto, J., Engen, S., Hindar, K. (1997). Stochastic dispersal processes in plant populations, Theoretical Population Biology 52(1), 16–26. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1006/tpbi.1997.1306")}
Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork, V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology 13, 937–954. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1365-294X.2004.02100.x")}
Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal Data and the Spread of Invading Organisms. Ecology 77(7), 2027–2042. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2265698")}
Nathan, R., Klein, E., Robledo‐Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution, 186–210. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/acprof:oso/9780199608898.003.0015")}
k_weibull(2:5, par=c(0,0), d=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.