Description Usage Arguments Details Value References See Also Examples

View source: R/321.Expec_Leng_CC_All.R

Expected Length summary of continuity corrected Wald method

1 |

`n` |
- Number of trials |

`alp` |
- Alpha value (significance level required) |

`c` |
- Continuity correction |

`a` |
- Beta parameters for hypo "p" |

`b` |
- Beta parameters for hypo "p" |

Evaluation of Wald-type interval with continuity correction using sum of length of the *n + 1* intervals

A dataframe with

`sumLen` |
The sum of the expected length |

`explMean` |
The mean of the expected length |

`explSD` |
The Standard Deviation of the expected length |

`explMax` |
The max of the expected length |

`explLL` |
The Lower limit of the expected length calculated using mean - SD |

`explUL` |
The Upper limit of the expected length calculated using mean + SD |

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

Other Expected length of continuity corrected methods: `PlotexplCAS`

,
`PlotexplCAll`

, `PlotexplCLT`

,
`PlotexplCSC`

, `PlotexplCTW`

,
`PlotexplCWD`

, `PlotlengthCAS`

,
`PlotlengthCAll`

,
`PlotlengthCLT`

, `PlotlengthCSC`

,
`PlotlengthCTW`

, `PlotlengthCWD`

,
`lengthCAS`

, `lengthCAll`

,
`lengthCLT`

, `lengthCSC`

,
`lengthCTW`

1 2 |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.