View source: R/fit_gradients.R
fit_gradients | R Documentation |
This function fits three gradient models (exponential, power, and modified power) to given data. It then ranks the models based on their R-squared values and returns diagnostic plots for each model.
fit_gradients(data, C = 1)
data |
A dataframe containing the data, with columns "x" representing distances and "Y" representing the corresponding measurements or counts. |
C |
A constant to be used in the modified power model. Defaults to 1. |
A list containing:
data |
The input data, which will include an additional column 'mod_x'. |
results_table |
A table of the model parameters and R-squared values. |
plot_exponential |
Diagnostic plot for the exponential model. |
plot_power |
Diagnostic plot for the power model. |
plot_modified_power |
Diagnostic plot for the modified power model. |
plot_exponential_original |
Plot of the original data with the exponential model fit. |
plot_power_original |
Plot of the original data with the power model fit. |
plot_modified_power_original |
Plot of the original data with the modified power model fit. |
Other Spatial analysis:
AFSD()
,
BPL()
,
count_subareas()
,
count_subareas_random()
,
join_count()
,
oruns_test()
,
oruns_test_boustrophedon()
,
oruns_test_byrowcol()
,
plot_AFSD()
x <- c(0.8, 1.6, 2.4, 3.2, 4, 7.2, 12, 15.2, 21.6, 28.8)
Y <- c(184.9, 113.3, 113.3, 64.1, 25, 8, 4.3, 2.5, 1, 0.8)
grad1 <- data.frame(x = x, Y = Y)
library(ggplot2)
mg <- fit_gradients(grad1, C = 0.4)
mg$plot_power_original +
labs(title = "", x = "Distance from focus (m)", y = "Count of lesions")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.