Description Usage Arguments Value Examples
Machine learning algorithm to learn item representations maximizing log likelihood under DPP assumption.
1 2 3 4 5 6 7 8 | learnItemEmb(
train_data_path,
emb_size,
regularization,
learning_rate,
neg_sample_cnt,
epoch
)
|
train_data_path |
A string for text file path. Each line: item_id,item_id,item_id |
emb_size |
int. ColumnNum for model parameter. While RowNum = number of uniq items parsed in train_data_path |
regularization |
float. Default = 0.1 |
learning_rate |
float. Generally begin with small learning_rate will train better. |
neg_sample_cnt |
int. |
epoch |
int. |
A list contains 1) learned item embedding matrix; 2) item names vector; 3) log likelihood on each training step vector.
1 2 3 | library(rDppDiversity)
data_path=system.file("extdata", "data.txt", package = "rDppDiversity")
learnItemEmb(data_path, 3, 0.1, 0.01, 0, 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.