Nothing
## ----include = FALSE----------------------------------------------------------
if (interactive()) {
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
root.dir = getwd()
)
} else {
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
root.dir = tempdir()
)
}
options(rmarkdown.html_vignette.check_title = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# # Get the full path of an example NetCDF file from inst/extdata/testdata
# example_nc <- system.file("extdata", "testdata", "1960_1.nc", package = "rIACI")
# cat("Example NetCDF file path:", example_nc, "\n")
#
# # Get the full path of an example CSV file from inst/extdata/testcsv
# example_csv <- system.file("extdata", "testcsv", "36.2_-5.6.csv", package = "rIACI")
# cat("Example CSV file path:", example_csv, "\n")
## ----eval=FALSE---------------------------------------------------------------
# # Install devtools if you haven't already
# install.packages("devtools")
#
# # Install rIACI from GitHub
# devtools::install_github("https://github.com/Nan-Z-byte/rIACI")
## ----eval=FALSE---------------------------------------------------------------
# download_data(start_year, end_year,
# start_month = 1,
# end_month = 12,
# variables = c("10m_u_component_of_wind",
# "10m_v_component_of_wind",
# "2m_temperature",
# "total_precipitation"),
# dataset = "reanalysis-era5-land",
# area = c(North, West, South, East),
# output_dir = "cds_data",
# user_id, user_key,
# max_retries = 3,
# retry_delay = 5,
# timeout = 7200)
#
## ----eval=FALSE---------------------------------------------------------------
# # Set your ECMWF user ID and key
# user_id <- "your_user_id"
# user_key <- "your_api_key"
#
# # Define the geographical area (North, West, South, East)
# # Example: Iberian Peninsula roughly bounded by 44N, -10W, 35N, 5E
# area_iberia <- c(44, -10, 35, 5)
#
# # Download data form the year 1960 to 2023
# download_data(
# start_year = 1960,
# end_year = 2023,
# area = area_iberia,
# user_id = user_id,
# user_key = user_key
# )
#
## ----eval=FALSE---------------------------------------------------------------
# process_data(input_dir, output_dir)
## ----eval=FALSE---------------------------------------------------------------
# input_directory <- "cds_data"
# output_directory <- "processed_data"
#
# process_data(input_dir = input_directory, output_dir = output_directory)
## ----eval=FALSE---------------------------------------------------------------
# export_data_to_csv(nc_file, output_dir)
## ----eval=FALSE---------------------------------------------------------------
# netcdf_file <- "processed_data/2020_01.nc"
# csv_output_directory <- "csv_output"
#
# export_data_to_csv(nc_file = netcdf_file, output_dir = csv_output_directory)
#
## ----eval=FALSE---------------------------------------------------------------
# csv_to_netcdf(csv_dir, output_file)
## ----eval=FALSE---------------------------------------------------------------
# csv_directory <- "csv_output"
# output_netcdf_file <- "final_data/merged_data.nc"
#
# csv_to_netcdf(csv_dir = csv_directory, output_file = output_netcdf_file)
## ----eval=FALSE---------------------------------------------------------------
# climate_input(tmax = NULL, tmin = NULL, prec = NULL, wind = NULL,
# dates = NULL,base.range = c(1961, 1990), n = 5,
# quantiles = NULL,
# temp.qtiles = c(0.10, 0.90), wind.qtile = 0.90,
# max.missing.days = c(annual = 15, monthly = 3),
# min.base.data.fraction_present = 0.1)
## ----eval=FALSE---------------------------------------------------------------
# # Assume you have a CSV file with climate data
# climate_data <- read.csv("processed_data/climate_data.csv")
#
# # Create climate input object
# ci <- climate_input(
# tmax = climate_data$TMAX,
# tmin = climate_data$TMIN,
# prec = climate_data$PRCP,
# wind = climate_data$WIND,
# dates = as.Date(climate_data$DATE, format = "%Y-%m-%d")
# )
#
## ----eval=FALSE---------------------------------------------------------------
# # Calculate monthly TX90p index
# tx90p_values <- tx90p(ci, freq = "monthly")
#
# # View the results
# head(tx90p_values)
#
## ----eval=FALSE---------------------------------------------------------------
# # Calculate standardized T90p index on a monthly basis
# t90p_std_values <- t90p_std(ci, freq = "monthly")
#
# # View the results
# head(tx90p_std_values)
#
## ----eval=FALSE---------------------------------------------------------------
# # Calculate seasonal TN10p index
# tx90p_seasonal <- monthly_to_seasonal(tx90p_values)
#
# # View the results
# head(tx90p_seasonal)
#
## ----eval=FALSE---------------------------------------------------------------
# sea_input(Date = levels(ci$date_factors$monthly), Value = NA)
## ----eval=FALSE---------------------------------------------------------------
# # Create sea level data
# sea_dates <- c("2020-01", "2020-02", "2020-03")
# sea_values <- c(1.2, 1.3, 1.4)
#
# sea_data <- sea_input(Date = sea_dates, Value = sea_values)
## ----eval=FALSE---------------------------------------------------------------
# iaci_output(ci, si, freq = c("monthly", "seasonal"))
## ----eval=FALSE---------------------------------------------------------------
# # Generate IACI
# iaci <- iaci_output(ci, sea_data, freq = "monthly")
#
# # View the IACI
# head(iaci)
## ----eval=FALSE---------------------------------------------------------------
# output_all(si, input_dir, output_dir, freq = c("monthly",
# "seasonal"),
# base.range = c(1961, 1990), time.span = c(1961, 2022))
#
## ----eval=FALSE---------------------------------------------------------------
# # Define input and output directories
# input_dir <- "csv_output"
# output_dir <- "iaci_results"
#
# # Run the output_all function with monthly frequency
# output_all(
# si = sea_std_values,
# input_dir = input_dir,
# output_dir = output_dir,
# freq = "monthly",
# base.range = c(1961, 1990),
# time.span = c(1961, 2022)
# )
## ----eval=FALSE---------------------------------------------------------------
# # Load the package
# library(rIACI)
#
# # Step 1: Download ERA5-Land data
# user_id <- "your_user_id"
# user_key <- "your_api_key"
# area_iberia <- c(44, -10, 35, 5) # Approximate bounds of Iberian Peninsula
#
# download_data(
# start_year = 2020,
# end_year = 2020,
# variables = c("2m_temperature", "total_precipitation",
# "10m_u_component_of_wind", "10m_v_component_of_wind"),
# area = area_iberia,
# user_id = user_id,
# user_key = user_key
# )
#
# # Step 2: Process downloaded data
# input_directory <- "cds_data"
# output_directory <- "processed_data"
#
# process_data(input_dir = input_directory, output_dir = output_directory)
#
# # Step 3: Export processed NetCDF to CSV
# netcdf_file <- "processed_data/2020_01.nc"
# csv_output_directory <- "csv_output"
#
# export_data_to_csv(nc_file = netcdf_file, output_dir = csv_output_directory)
#
# # Step 4: Create climate input object
# climate_data <- read.csv("processed_data/climate_data.csv")
# ci <- climate_input(
# tmax = climate_data$TMAX,
# tmin = climate_data$TMIN,
# prec = climate_data$PRCP,
# wind = climate_data$WIND,
# dates = as.Date(climate_data$DATE, format = "%Y-%m-%d")
# )
#
# # Step 5: Integrate sea level data
# sea_dates <- c("2020-01", "2020-02", "2020-03")
# sea_values <- c(1.2, 1.3, 1.4)
# sea_data <- sea_input(Date = sea_dates, Value = sea_values)
# sea_std_values <- sea_std(sea_data, freq = "monthly")
#
# # Step 6: Generate IACI
# iaci <- iaci_output(ci, sea_std_values, freq = "monthly")
# print(head(iaci))
#
# # Step 7: Output all results
# output_all(
# si = sea_std_values,
# input_dir = csv_output_directory,
# output_dir = "iaci_results",
# freq = "monthly",
# base.range = c(1961, 1990),
# time.span = c(1961, 2022)
# )
#
# # Step 8: Merge CSVs into NetCDF (optional)
# merged_netcdf <- "iaci.nc"
# csv_to_netcdf(csv_dir = iaci_results_directory, output_file = merged_netcdf)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.