Nothing
## ----echo = F-----------------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
## ----eval = F-----------------------------------------------------------------
# library(rLakeHabitat)
#
# #load example depth data
# depths <- read.csv("data/example_depths.csv")
# #load example outline
# outline <- vect("data/example_outline.shp")
#
# #rarify input data -- example data won't change
# clean_depth <- rarify(outline, depths, "x", "y", "z", res = 5)
#
# #obtain xyz point data from depth contours
# contours <- read_sf("~/UW_Research/Project5_Habitat_Mapping/Repositories/rLakeHabitat/data/example_contour.shp")
#
# contour_depths <- contourPoints(contours, depths = "Z", geometry = "geometry", density = 50)
## ----eval = F-----------------------------------------------------------------
# #load example depth data
# depths <- read.csv("data/example_depths.csv")
# #load example outline
# outline <- vect("data/example_outline.shp")
#
# #interpolate using Inverse Distance Weighted method
# DEM <- interpBathy(outline, depths, "x", "y", "z", zeros = F, separation = 10,
# crsUnits = "dd", res = 10, method = "IDW", nmax = 6, idp = 2)
# plot(DEM)
#
# #obtain RMSE for IDW interpolation
# crossValidate(outline, depths, "x", "y", "z", zeros = F, separation = 10, k = 5,
# crsUnits = "dd", res = 10, method = "IDW", nmax = 6, idp = 2)
#
# #Interpolate using Ordinary Kriging method
# DEM <- interpBathy(outline, depths, "x", "y", "z", zeros = F, separation = 10,
# crsUnits = "dd", res = 50, nmax = 6, method = "OK", model = "Sph")
# plot(DEM)
#
# #obtain RMSE for OK interpolation
# crossValidate(outline, depths, "x", "y", "z", zeros = F, separation = 10, k = 5,
# crsUnits = "dd", res = 50, nmax = 6, method = "OK", model = "Sph")
## ----eval = F-----------------------------------------------------------------
# #load example temperature profile data
# thermo_data <- read.csv("data/example_profile_data.csv") %>%
# mutate(date = as.Date(date))
#
# #estimate average thermocline depth across sites and dates
# estThermo(thermo_data, site = "site", date = "date", depth = "depth", temp = "temp", combine = "all")
#
# #generate hypsography data, output = 'values' or 'plot'
# calcHyps(DEM, DEMunits = 'm', depthUnits = 'ft', by = 1, output = 'values')
#
# #calculate littoral area
# calcLittoral(DEM, secchi = 2, DEMunits = 'm', depthUnits = 'ft', by = 1)
#
# #calculate shoreline development index
# calcSDI(DEM, units = 'm', by = 1)
#
# #calculate volume of pelagic habitats
# calcVolume(DEM, thermo_depth = 4, DEMunits = 'm', depthUnits = 'm', by = 1)
#
# #calculate volume of pelagic vs. littoral habitat
# littoralVol(DEM, secchi = 2, DEMunits = 'm', depthUnits = 'm', by = 1)
## ----eval = F-----------------------------------------------------------------
# #generate bathymetry map
# bathyMap(DEM, contours = T, units = "m", by = 1)
#
# #generate animated bathymetry map of littoral area or whole waterbody area across water levels
# animBathy(DEM, units = 'm', littoral = T, secchi = 2, by = 1)
## ----eval = F-----------------------------------------------------------------
# #generate raster stack from interpolated DEM
# raster_stack <- genStack(DEM, by = 1, save = F) #don't save
# plot(raster_stack)
#
# genStack(DEM, by = 1, save = T, file_name = "Example_stack") #save
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.