Description Usage Arguments Value Author(s) Examples
Detects and computes the location and height of individual trees within the LiDAR-derived Canopy Height Model (CHM). The algorithm implemented in this function is local maximum with a fixed window size.
1 | FindTreesCHM(chm,fws,minht)
|
chm |
A LiDAR-derived Canopy Height Model (CHM) raster file. |
fws |
A single dimension (in raster grid cell units) of fixed square window size, e.g. 3, 5, 7 and so on. Default is 5. |
minht |
Height threshold. Detect individual trees above specified height threshold, e.g. 1.37, 2.0, 3.5 m and so on. Default is 1.37 m. |
Returns A matrix with four columns (tree id, xy coordinates, and height).
Carlos Alberto Silva
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # Importing the LiDAR-derived CHM raster file
data(chm) # or set a CHM. e.g. chm<-raster("CHM_stand.asc")
# Smoothing CHM
schm<-CHMsmoothing(chm, "mean", 5)
# Setting the fws:
fws<-5 # dimention 5x5
# Setting the specified height above ground for detectionbreak
minht<-8.0
# Getting the individual tree detection list
treeList<-FindTreesCHM(schm, fws, minht)
summary(treeList)
# Plotting the individual tree location on the CHM
library(raster)
plot(chm, main="LiDAR-derived CHM")
library(sp)
XY<-SpatialPoints(treeList[,1:2]) # Spatial points
plot(XY, add=TRUE, col="red") # plotthing tree location
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.